

Road Safety Assessment

SC 48 (Assembly Street)

from Elmwood Avenue to Rosewood Drive

May 2024

1.	Introduction	1	3
	1.1 Background		
	1.2 Objective		
	1.3 Road Safety Assessment Team Summary		
2.	Relevant Data Review		
	2.1 Site Characteristics		
	2.2 Crash Data		
	2.3 Speed Data		
	2.4 Volume Data		
	2.5 Planne	d Improvements & Recent Studies	12
3.	Findings and Recommendations		
	3.1 Positive Measures		
	3.2 Corridor-Wide		
	3.3 Intersed	ction-Specific Considerations	17
	3.3.1	Assembly Street at Elmwood Avenue	17
	3.3.2	Assembly Street at Calhoun Street	18
	3.3.3	Assembly Street at Richland Street	21
	3.3.4	Assembly Street at Laurel Street	23
	3.3.5	Assembly Street at Blanding Street	25
	3.3.6	Assembly Street at Taylor Street	27
	3.3.7	Assembly Street at Hampton Street	29
	3.3.8	Assembly Street at Washington Street	31
	3.3.9	Assembly Street at Lady Street	32
	3.3.10	Assembly Street at Gervais Street	33
	3.3.11	Assembly Street at Senate Street	35
	3.3.12	Assembly Street at Pendleton Street	37
	3.3.13	Assembly Street at College Street	39
	3.3.14	Assembly Street at Greene Street	41
	3.3.15	Assembly Street at Devine Street	43
	3.3.16	Assembly Street at Blossom Street	45

	3.3.17	Assembly Street at Wheat Street	47			
	3.3.18	Assembly Street at Catawba Street	49			
	3.3.19	Assembly Street at Whaley Street	52			
	3.3.20	Assembly Street at Dreyfuss Road	54			
	3.3.21	Assembly Street at Rosewood Drive	56			
4.	Crash Reduction Analysis					
5.	Summary of Costs6					
6. General Recommendations						
	6.1 Education	on and Enforcement	65			
Lis	t of Figures					
Fig	Figure 1: Pre-Audit Meeting4					
Figure 2: Study Area Map						
Figure 3: Speed Study Locations						
Figure 4: Speed Study – Location 1						
Figure 5: Speed Study – Location 2						
Figure 6: Speed Study – Location 3						
Figure 7: Vehicle and Pedestrian / Bicycle Count locations						
Figure 8: Calhoun Street Bike Lane Project						
Fig	Figure 9: Dreyfus Road at Assembly Street Improvements					
Lis	t of Tables					
Tak	Table 1: Available CMF data for Assembly Street					
Tak	Fable 2: Expected Crash Reduction on Assembly Street					

List of Appendices

Appendix A: RSA Sign-in Sheets

Appendix B: RSA Summary Package

Appendix C: Crash Data

Appendix D: Speed Study Data

Appendix E: Concept Plan

1. Introduction

1.1 Background

SC 48 (Assembly Street) is in Richland County within the city limits of Columbia, South Carolina. It provides a direct north-south access to South Carolina's State House and the main campus for the University of South Carolina. It is a vital corridor that supports commerce, special events, commuters, tourism, retail, and recreation.

The corridor selected for this Road Safety Audit is from Mile Point 0.00, or Elmwood Avenue (US 21), to Mile Point 2.50, or Rosewood Drive (SC 16), for 2.5 miles. It can be divided into three general sections:

- Elmwood Avenue to Gervais Street Business/Retail District
- Gervais Street to Heyward Street Campus
- Heyward Street to Rosewood Avenue Light Industrial

According to data provided by SCDOT, there have been 1,603 crashes recorded from January 2018 to December 2022. 34 of the crashes involved a pedestrian.

1.2 Objective

Road Safety Audits (RSA) are a formal safety performance examination of an existing or future road or intersection by an independent, multidisciplinary team.

It qualitatively estimates and reports on potential road safety issues and identifies opportunities for improvements in safety for all road users. During the audit the team identifies areas of concern based on crash data analysis and observations in the field. After the field visit, the team categorizes potential areas of improvement along the study corridor.

The RSA report along with the 'Conceptual Improvement Plans' for safety improvements, which include both corridor-wide and location-specific recommendations, are considered high level conceptual alternatives that include both short-term, mid-term, and long-term improvements and their estimated costs to implement. This document and the proposed improvements should be used as a planning level tool for all agencies and stakeholders for consideration if a project is to be programmed and funded in the future. Additionally, if future projects are programmed based on this document, as scoping, designs and budgets are proposed, the concepts depicted in this report may be revised, altered, removed, or delayed based on the scope, design, and budget of that potential project. The owner of this RSA report, SCDOT, also does not guarantee any future project nor any specific countermeasure as shown. Past, present, and future collaboration with all stakeholders is appreciated and will go a long way in helping make South Carolina roads safety for all users.

1.3 Road Safety Assessment Team Summary

The multidisciplinary team for the SC 48 (Assembly Street) road safety assessment consisted of engineers from the South Carolina Department of Transportation (SCDOT), Mead & Hunt, AMT, and the Federal Highway Administration (FHWA). The City of Columbia's Department of Traffic Safety Unit provided representation from traffic enforcement. The team and stakeholders met on Wednesday, April 5, 2023 and Thursday, April 6, 2023. Sign-in sheets for both meetings are in Appendix A.

FIGURE 1: PRE-AUDIT MEETING

RSA Team

- 1. Gene Taylor SCDOT
- 2. Robbie Amick SCDOT
- 3. Shawn Sally SCDOT
- 4. Evan Johnson SCDOT District 1
- 5. Carolyn Fisher FHWA
- 6. Sergeant Robert Uhall City of Columbia Police Department
- 7. Tony Fallaw Mead & Hunt

- 8. Josh Coulson Mead & Hunt
- 9. Carol Jones Mead & Hunt
- 10. Jennifer Satterthwaite Mead & Hunt
- 11. Chris Ulmer AMT
- 12. Nick Matthews AMT

The stakeholders consisted of additional representation from the City of Columbia, Richland County, and SCDOT.

- 13. Kaylon Meetze SCDOT
- 14. Doug Giovanetti SCDOT
- 15. Isaiah Bowman SCDOT
- 16. Duncan Smith SCDOT
- 17. Adam Hixon Richland County

- 18. Lucinda Statler City of Columbia
- 19. Leigh DeForth City of Columbia
- 20. Amy Johnson Ely PCC Executive Director
- 21. Emily Jones USC Facilities

2. Relevant Data Review

2.1 Site Characteristics

Assembly Street is a part of the National Highway System and is classified as an Urban Principal Arterial from Elmwood Avenue to Blossom Street. It's classification changes to an Urban Minor Arterial from Blossom Street to Rosewood Avenue. A map of the Assembly Street study corridor is shown in Figure 2.

The road characteristics are as follows:

- Elmwood Avenue to Calhoun Street: 7-lane divided roadway with a raised landscaped median
- Calhoun Street to Laurel Street: 6-lane divided roadway with a raised landscaped median
- Laurel Street to Taylor Street: 7-lane divided roadway with a raised concrete median
- Taylor Street to Pendleton Street: 6-lane divided roadway with a combination raised concrete/landscaped median with on-street parking
- Pendleton Street to Blossom Street: 6-lane divided roadway with raised landscaped median
- Blossom Street to Wheat Street: 4-lane divided roadway with a raised concrete median
- Wheat Street to Catawba Street: 4-lane divided roadway with a two-way left turn lane
- Catawba Street to Whaley Street: 4-lane non-divided roadway
- Whaley Street to Rosewood Drive: 6-lane non-divided roadway

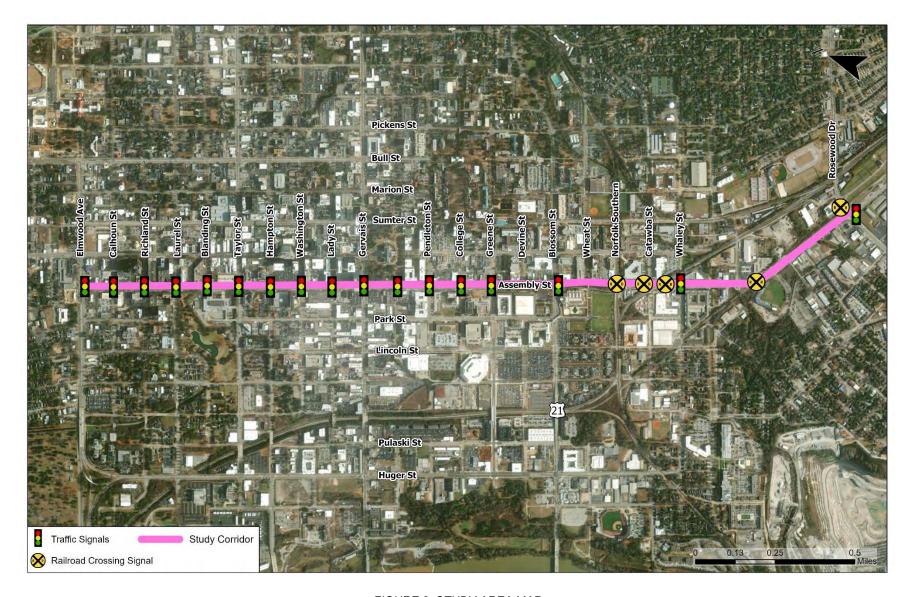


FIGURE 2: STUDY AREA MAP

2.2 Crash Data

Crash data for this section of roadway was obtained by SCDOT over a 5-year period from January 1, 2018 to December 31, 2022, with a full summary in Appendix B. There have been 1,603 crashes along this corridor during the 5-year period. Based on this data, the predominant type of crash was rear-end collisions accounting for 508 crashes, or 31.7% of all crashes. This was followed by left-turn crashes (336 crashes, 21%), angle crashes (296 crashes, 18.5%), sideswipe crashes (284 crashes, 17.7%), and head-on crashes (27, 1.7%). Of the 1,603 crashes, 16.9% involved some type of injury. There were 34 pedestrian crashes and 8 crashes involving bicycles.

There was 1 collision resulting in a fatality. The most prevalent crash type is non-injury or property damage only (PDO) at 83.1% of all crashes. This is followed by a possible injury at 13.0% of the crashes. The remaining crashes fall into the injury categories of non-incapacitating injury at 3.2%, incapacitating injury at 0.6%, and a fatality at <1%.

72.9% (1,169) of the crashes occurred during the day, with 27.1% (434) occurring at night. Crashes were more prevalent on weekdays with no observed major peaks from Monday through Friday. Crashes occurred most frequently between the hours of 12:00 PM through 5:00 PM. The RSA field review was conducted on Wednesday, April 5, 2023 and Thursday, April 6, 2023.

2.3 Speed Data

Speeding can be one of the most prevalent factors contributing to crashes. As part of this road safety assessment, a speed study was conducted on March 29, 2023 to evaluate observed speeds compared to posted speed limit. A total of 3 locations were evaluated along the corridor. Location 1 was between Laurel Street and Blanding Street. Location 2 was between Gervais Street and Pendleton Street. Location 3 was between Heyward Street and Dreyfuss Road. Over 200 samples were collected per study location. The study was conducted in the morning between 10:00 AM and 11:00 AM. The speed data gathered can be found in Appendix D. It was noted during Pre Audit Meeting that there was a significant detour in place during the time of the speed study and it was suggested the additional traffic could have influenced the results of the study.

Figure 3 shows the location for each study.

FIGURE 3: SPEED STUDY LOCATIONS

Figure 4, Figure 5, and Figure 6 show the distribution of speed compared to the posted speed limit for each location. The posted speed in the study area was 35 mph for the entire length of the corridor. For Locations 1 and 2, the study shows that the average speed and 85th percentile speeds of vehicles were less than the posted speed limit. Location 3 shows that the average speed and 85th percentile speeds were higher than the posted speed limit.

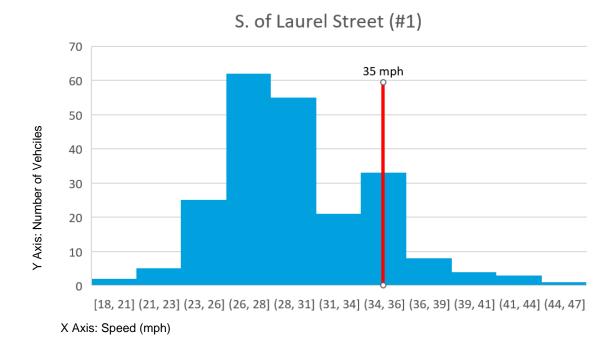
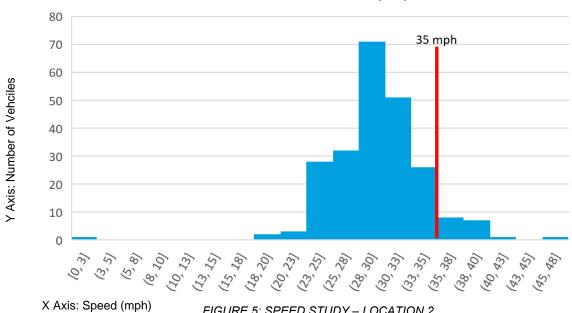



FIGURE 4: SPEED STUDY - LOCATION 1

S. of Gervais Street (#2)

S. of Heyward St (#3)

FIGURE 5: SPEED STUDY - LOCATION 2

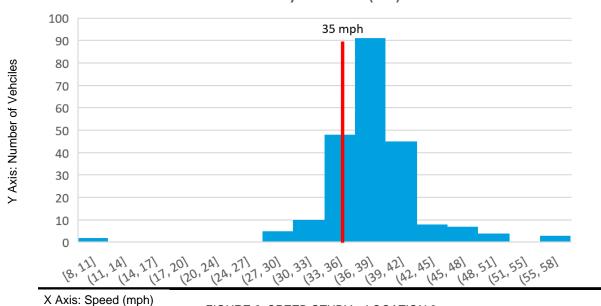


FIGURE 6: SPEED STUDY - LOCATION 3

In addition to the speed study, INRIX speed data from October 2022 was analyzed and compared to the results of the speed study. This data is used to gauge the average time it takes for motorists to travel through the corridor. Average speeds derived from INRIX data are influenced by congestion and signal coordination. Average speeds were evaluated during the AM Peak, PM Peak and Off-Peak hours. The INRIX data appeared to correlate with the results of the speed study. The INRIX data showed that the average travel speeds for the AM peak, PM peak and Off peak hours where lower than the posted speed

SC 48 (Assembly Street)

limit from Elmwood Avenue to Blossom Street. The only location where average travel speeds approached the posted limit is in the southbound direction from Blossom Street to Rosewood Drive.

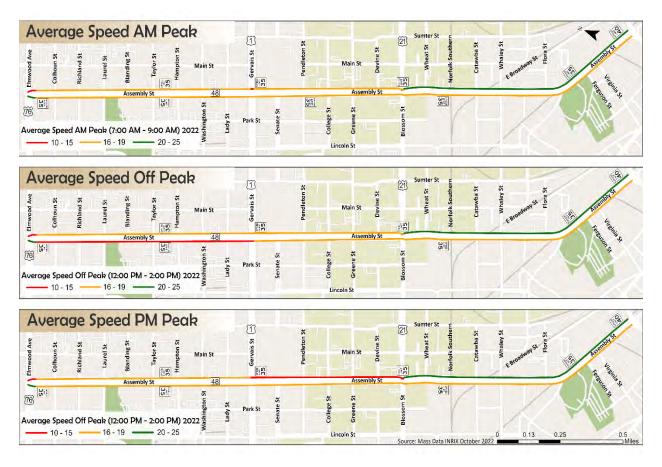


FIGURE 6.1: INRIX SPEED DATA

There are countermeasures that can be taken to deter speeding along this corridor. A more visible presence of law enforcement in the area may reduce the average speed. In addition, ensuring that speed limit signs are posted and visible at appropriate intervals along the roadway may also help control speed. Speeds should continue to be monitored along the corridor to determine if countermeasures are warranted.

2.4 Volume Data

Vehicle, bicycle and pedestrian counts were performed at several locations along the corridor. The locations of the counts are shown in Figure 7. Vehicle count locations are shown with a blue line and pedestrian/bicycle locations are shown with a red line.

FIGURE 7: VEHICLE AND PEDESTRIAN / BICYCLE COUNT LOCATIONS

SCDOT has four count stations along Assembly Street between the following cross streets. The 2022 average daily traffic for each count station are as follows:

Station 1 (Blue) Calhoun Street and Richland Street: 20,500

Station 2 (Blue) Hampton Street and Washington Street: 20,800

Station 3 (Blue) Street and Blossom Street: 22,000

Station 4 (Blue) Dreyfuss Road and Ferguson Street: 21,900

The City of Columbia provided bike and pedestrian counts at two locations along Assembly Street. A map of the Pedestrian and Bicycle counts locations is shown in blue on Figure 7. In 2021 the City of Columbia provided an estimated daily average of 1,582 pedestrians and 23 bicycles between Washington Street and Hampton Street. The study noted that the number of pedestrians observed doubled on the weekends. Hourly counts at this location were provided on three separate dates.

Station 1 (Red)

- Saturday, April 9, 2022: 77 pedestrians and 1 bicyclist were recorded along the sidewalk between the hours of 10:00 am and 12:00 pm. 5 jaywalkers were recorded crossing Assembly Street.
- Thursday, September 15, 2022: 74 pedestrians and 4 bicyclists were recorded along the sidewalk between the hours of 7:40 am and 9:40 am. 59 jaywalkers were recorded crossing

Assembly Street.

• Tuesday, April 4, 2023: 68 pedestrians and 5 bicyclists were recorded along the sidewalk between the hours of 7:45 am and 9:45 am. 21 jaywalkers were recorded crossing Assembly Street.

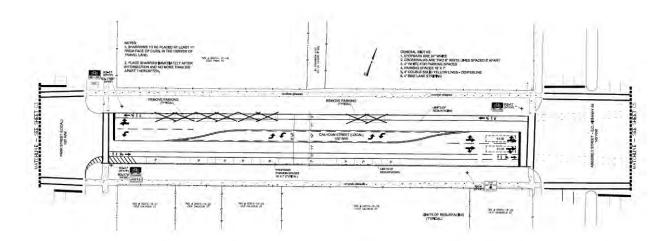
The City of Columbia also provided hourly counts between Whaley Street and Catawba Street.

Station 2 (Red)

• Saturday, September 24, 2022: 67 pedestrians and 4 bicyclists were recorded along the sidewalk between the hours of 10:00 am and 12:00 pm. 6 jaywalkers were recorded crossing Assembly Street.

2.5 Planned Improvements & Recent Studies

There are several planned projects along the corridor.


Whaley Street Resurfacing

Whaley Street is on SCDOT's 2025 resurfacing list. The City's plan calls for bike lanes along Whaley Street.

Calhoun Street Bike Facilities

The City of Columbia has installed the bicycle accommodations along Calhoun Street to include 5-foot bike lanes on both approaches to Assembly Street. Other improvements include resurfacing, new pavement markings, and related signage.

A portion of the plans within the are shown in Figure 8.

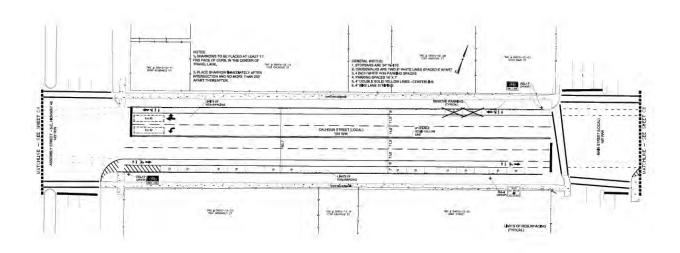


FIGURE 8: CALHOUN STREET BIKE LANE PROJECT

Rocky Branch Greenway

Richland County received assistance from EPA's Greening America's Communities program to visualize potential improvements to a city-owned parcel of land along the Rocky Branch, which runs east-west from the Five Points district in downtown to the Congaree River. This project fits into the larger vision for Columbia's Rocky Branch Greenway and is one of the last remaining stands of canopy trees and space for recreational use in the Capital City Mill District.

Richland County proposed Rocky Branch Greenway would enhance pedestrian and bicycle connectivity to the site from the Congaree River to north of the University of South Carolina's campus, while Assembly Street serves as the site's primary vehicular connection to downtown and beyond. Figure 9 shows potential improvements at the intersection of Dreyfus Road and Assembly Street.

FIGURE 9: DREYFUS ROAD AT ASSEMBLY STREET IMPROVEMENTS

Assembly Street Streetscape

The proximity of Assembly Street to both the government complex and the University has resulted in safety concerns that involve pedestrians, cyclists, and motor vehicles. Because the collision and incident rate are more frequent than other areas within the city, the City of Columbia is proposing to address these concerns with pedestrian lighting, revisions to the existing typical sections and parking locations, decreasing the longitudinal distance a pedestrian or cyclist is exposed to a vehicular travel lane, and installing traffic calming measures through the addition of landscaping and beautification elements.

The City of Columbia proposes to improve pedestrian and cyclist safety along Assembly Street from Pendleton Street to Lady Street. The proposed project includes repairing/replacing existing sidewalks, removing median parking, creating a planted median, installing curb bump-outs and median shelters to reduce pedestrian crossing times, and installing lighting.

3. Findings and Recommendations

3.1 Positive Measures

- Roadway pavement markings are acceptable.
- Traffic signals spacing meet current Access and Roadway Manual Standards (ARMS).
- Based on average daily volumes and visual inspection, the corridor is under capacity.
- Most signals have standard crosswalk marking and pedestrian signal heads, and curb ramps.
- Grade-separated pedestrian crossings are present at Wheat Street and Greene Street.
- Green painted bike lanes through conflict areas are provided on the west leg of Greene Street.
- The corridor north of Blossom Street offers good connectivity between parcels and parallel routes with sidewalks present on both sides of the roadway.
- The completed streetscape project between Pendleton Street and Blossom Street has several safety features, including curb extensions, median pedestrian refuges, signal back plates, high contrast crosswalk treatments, and exclusive left turn lanes.

3.2 Corridor-Wide

Concerns:

- Long crossing distances at most intersections 100 feet to 120 feet result in increased pedestrian exposure.
- Although signals are timed to allow crossings within a single signal cycle, the long crossing distances result in pedestrians who fail to fully comply with traffic control devices being stranded in the median with no way to recall pedestrian phase in the subsequent cycle.
- Poor compliance with traffic signal control was observed with several near misses observed in the field.
- Sight distance for permissive left turn movements is limited by vertical curvature, median foliage, and offset left turn movements.
- The difficult nature of left turn gap identification and acceptance leads to poor yield compliance with pedestrian movements from left turning vehicles.
- Inconsistency with pedestrian recall.
- Lack of pedestrian infrastructure south of Blossom Street with clear pedestrian desire lines and elevated activity.
- 34 pedestrian crashes including 1 fatality.
- On-street parking

Corridor Wide Considerations

Short-Term:

Maintenance

o Repair faulty push buttons at pedestrian crossings along Assembly St. (\$20,000)

Traffic Control

- Install back plates on signal heads (\$73,000)
- Restripe all existing crosswalks with ladder style markings. Paint new crosswalks

- per guidance in the following section (see section 3.3 for more details 3.3) (\$12,000)
- Remove pedestrian signal head obstructions or relocate signal heads when removal is not feasible (924,000)

Transit

Relocate bus stops closer to intersections to deter mid-block crossings (\$77,000)

Mid-Term:

Maintenance

- Repair existing roadway lighting deficiencies (\$60,000))
- Update pedestrian crossings to meet ADA compliance standards (\$252,000)

Operations

- Implement protected left turn phasing throughout the study area (\$280,000)
- Activate pedestrian recall and institute Leading Pedestrian Interval (LPI) phasing (\$140,000)
- Institute No Right Turn on Red (NRTOR) throughout study area (\$792,000)
- Adjust pedestrian clearance intervals (see section 3.3 for more details)
 (\$120,000)
- o Provide a signal head for each lane (\$633,600)
- Standardize traffic signal operations (i.e., equipment placement, NEMA phasing) (\$660,000)
- Update traffic signal operations to meet MUTCD compliance standards (\$220,000)

Geometric Design

Construct median barrier (\$2,800,000)

Long-Term:

• Geometric Design

 Repurpose space along the corridor to improve pedestrian and bicycle infrastructure along the southern segment (\$1,056,000)

Operations

- o Install pedestrian push buttons in median refuges (\$46,000)
- Review future corridor lighting needs (\$4,680,000)

Traffic Control

 Revise signal mounting and placement to improve signal conspicuity due to trees, grades, etc. (\$494,000)

3.3 Intersection-Specific Considerations

3.3.1 Assembly Street at Elmwood Avenue

Concerns:

- Major intersection with heavy traffic volumes and complex signal phasing
- Unsignalized commercial driveway ties into the signalized intersection
- · Lack of pedestrian facilities on the west leg of the intersection
- Dual permissive turning movements across pedestrian crossings
- Unused pavement on the south leg expands pedestrian conflict zones
- Low utilization of the exclusive eastbound right turn lane observed during both the AM and PM peak hours

Considerations:

Short-Term:

Operations

 Incorporate all marked crossings into the existing pedestrian-only phase (\$16,000)

Traffic Control

Sign western U-Haul driveway as ingress only (\$1,100)

• Geometric Design

 Revise lane-assignments to eliminate dual right turning movements in conflict with pedestrian crossings. ((\$9,000)

Mid-Term:

Geometric Design

- Extend median on south leg to provide a pedestrian refuge (\$21,000)
- Construct curb extensions to reduce pedestrian crossing distances (\$65,000)

• Traffic Control

Install a marked pedestrian crossing on eastern leg with push buttons and signals (\$14,000)

3.3.2 Assembly Street at Calhoun Street

Concerns:

0

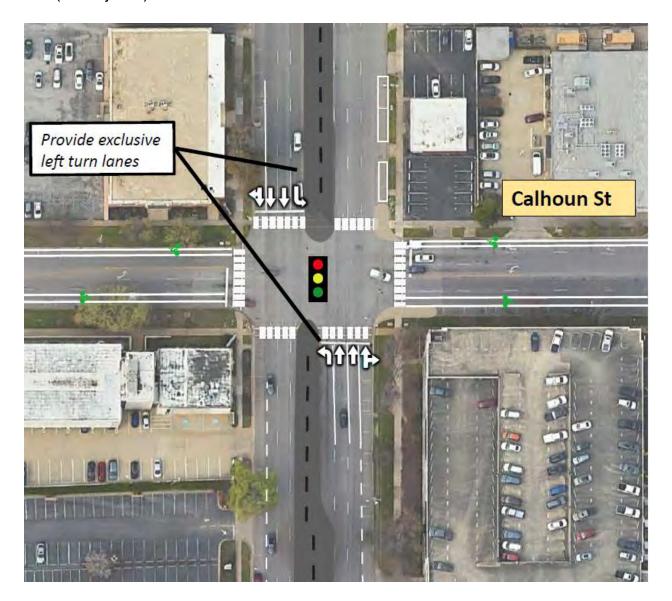
- No curb ramps present on southeast corner of Assembly Street crosswalk.
- Curb ramps lack ADA detectable warning surfaces.
- Sight distance for mainline permissive left turn movements limited by median foliage. Vehicles
 observed accepting short gaps requiring opposing through vehicles to use breaks to avoid
 collision.
- Left turn movements in shared through left turn lanes result in lane changes by trailing through vehicles. This configuration is atypical along the corridor contributing to driver expectancy issues.

Considerations:

Short-Term:

• Geometric Design

 Trim trees and shrubbery to improve intersection sight distance in the median between Calhoun Street and Richland Street (\$11,500)


Mid-Term:

• Geometric Design

- o Construct curb extensions to reduce pedestrian crossing distances (\$35,000)
- o Extend median on north and south legs to provide a pedestrian refuge (\$31,000)
- Provide exclusive left turn lanes on northbound and southbound approaches (\$27,000)

Operations

o Implement protected left turn phasing in both directions along Assembly (\$20,000)

3.3.3 Assembly Street at Richland Street

Concerns:

- Heavy pedestrian traffic and vehicle turning movements due to the parking garage for the federal building on Richland Street.
- No pedestrian signal heads present for east and west leg crossings.
- Near miss observed during field walk from northbound vehicle red light violation.
- Crest curve to the south limits sight distance for southbound left turns.
- Signal conspicuity reduced due to roadway grade and visual clutter from tree foliage.
- Sight distance for mainline permissive left turn movements limited by median foliage. Vehicles
 observed accepting short gaps requiring opposing through vehicles to use brakes to avoid
 collision.
- Left turn movements in shared through left turn lanes result in lane changes by trailing through vehicles. This configuration is atypical along the corridor contributing to driver expectancy issues.

Considerations:

Mid-Term:

Traffic Control

 Install pedestrian signal heads and push buttons for side-street crossings (\$14,000)

• Geometric Design

- Construct curb extensions to reduce pedestrian crossing distances (\$52,000)
- Provide exclusive left turn lanes on northbound and southbound approaches (\$27,000)
- Extend median on north and south legs to provide a pedestrian refuge (\$39,200)

Operations

Implement protected left turn phasing in both directions along Assembly Street. (\$20,000)

3.3.4 Assembly Street at Laurel Street

Concerns:

- Intersection located on a vertical crest curve limiting sight distance for permissive left turn movements.
- Near miss observed during field walk from northbound left vehicle accepting too short of a gap in southbound through traffic.
- Southbound left turn movement in shared through left turn lanes result in lane changes by trailing through vehicles. This configuration is atypical along the corridor contributing to driver expectancy issues.

Considerations:

Short-Term:

Traffic Control

o Install signage and paint pavement markings to prohibit southbound left turn movements from Assembly Street (\$6,500)

Mid-Term:

• Geometric Design

- Remove the northbound right turn lane (\$7,500)
- Construct curb extensions to reduce pedestrian crossing distances (\$65,000)
- Extend median on north leg to provide a pedestrian refuge (\$20,000)

Operations

o Implement protected left turn phasing in the northbound direction along Assembly Street (\$20,000)

3.3.5 Assembly Street at Blanding Street

Concerns:

- · Location of pedestrian fatality.
- Intersection located at the bottom of a steep slope in the southbound direction contributing to
 excessive vehicle speeds. Additionally, the angle of approach causes the signal to compete
 with visual clutter.
- Side street is low volume and signal actuation results in frequent skipped cycles contributing to a driver expectancy of always having a green indication.
- Issues with signal compliance were observed.
- Bus stop placement encourages mid-block crossings.

Considerations:

Mid-Term:

Transit

- o Relocate bus stops and shelters closer to the crosswalk (\$20,000)
- Implement a full median closure, prohibiting southbound lefts onto Blanding Street, and northbound lefts into the post-office entrance. Pedestrian refuges should be provided on the north and south leg crossings (\$128,000)

Road Safety Audit Report SC 48 (Assembly Street)

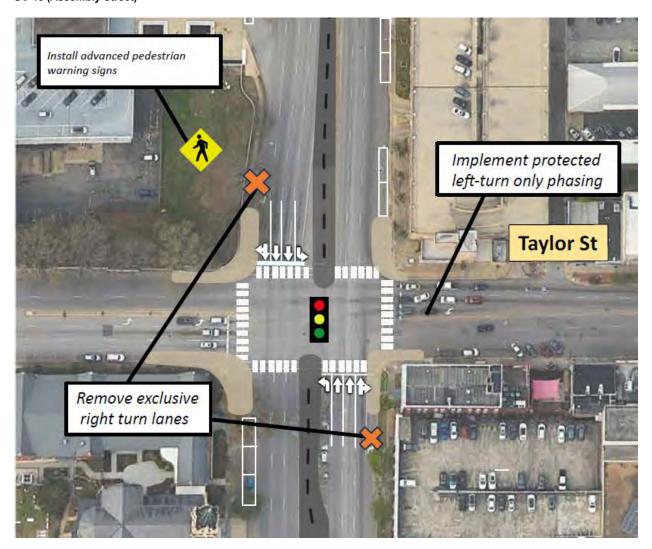
3.3.6 Assembly Street at Taylor Street

Concerns:

- Heavy pedestrian volume in this area due to Oliver Gospel Mission, parking garage, bus stop, park, and area businesses
- Queueing issues observed with the short storage distance provided in the exclusive left turn lane northbound.
- The sight distance for the westbound left turn is limited by a crest curve.
- Parking is provided in the median with no pedestrian actuation abilities from the median.

Considerations:

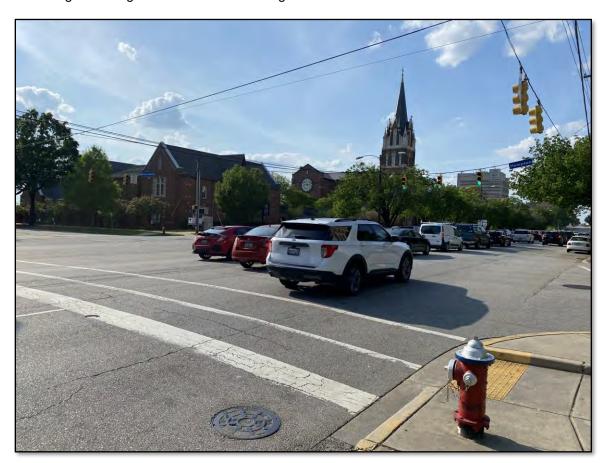
Short-Term:


Traffic Control

 Provide pedestrian warning signage to increase awareness of pedestrians crossing the road (\$2,840)

Mid-Term:

Traffic Control


- o Implement protected-only turn phasing for the westbound left turn or side street split phasing (\$20,000)
- o Remove exclusive right turn lanes (\$8,000)
- Extend left-turn storage lane on Assembly Street northbound (\$27,000)
- Extend median on north and south legs to provide pedestrian refuge (\$102,000)
- Construct curb extensions to reduce pedestrian crossing distances (\$75,000)

3.3.7 Assembly Street at Hampton Street

Concerns:

- Parking is provided in the median with no pedestrian actuation abilities from the median.
- Young school-age children observed using crosswalks.

Considerations:

Short-Term:

• Traffic Control

Provide pedestrian warning signage to increase awareness of pedestrians crossing the road (\$2,840)

Mid-Term:

Geometric Design

- o Extend median on north and south legs to provide pedestrian refuge (\$32,000)
- o Construct curb extensions to reduce pedestrian crossing distances (\$41,000)

3.3.8 Assembly Street at Washington Street

Concerns:

- Parking is provided in the median with no pedestrian actuation abilities from the median.
- 117 jaywalkers observed mid-block during latest city pedestrian count south of the intersection.

Considerations:

Mid-Term:

Geometric Design

- o Extend median on north and south legs to provide pedestrian refuge (\$40,000)
- o Construct curb extensions to reduce pedestrian crossing distances (\$81,000)

3.3.9 Assembly Street at Lady Street

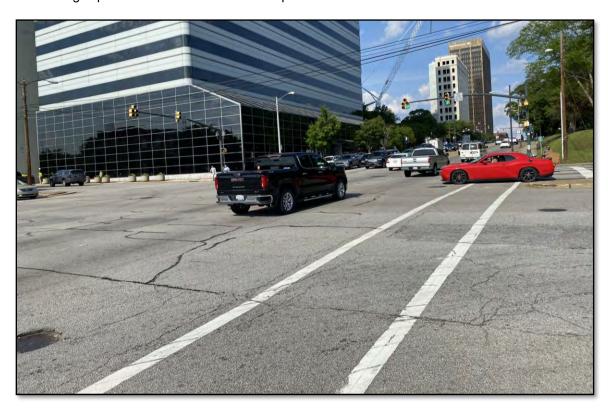
Concerns:

- Pedestrian signal heads not aligned with crossing on west leg.
- Parking is provided in the median with no pedestrian actuation abilities from the median.

Considerations:

Mid-Term:

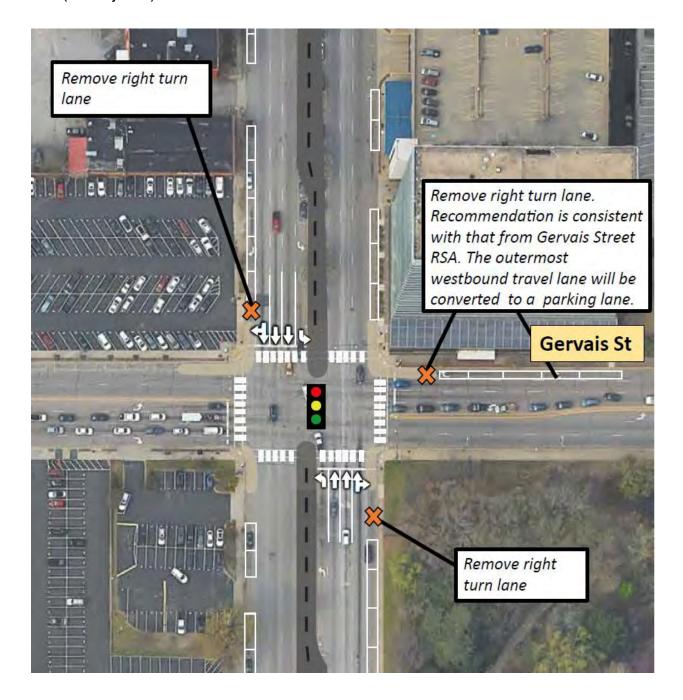
• Geometric Design


- Construct curb extensions to reduce pedestrian crossing distances (\$57,000)
- o Extend median on north and south legs to provide pedestrian refuge (\$40,000)

3.3.10 Assembly Street at Gervais Street

Concerns:

- The short setback from the building face on the northeast corner restricts sight distance of pedestrians approaching crosswalk from the north.
- Major intersection with wide crossing distances and heavy traffic volumes.
- Sidewalk is narrow along Assembly Street northbound side of the intersection.
- Parking is provided in the median with no pedestrian actuation abilities from the median.



Considerations:

Mid-Term:

• Geometric Design

- Remove the westbound, southbound, and northbound right-turn lanes. Removing the westbound right turn lane along Gervis Street is consistent with the recommendations provided in the Gervais Street RSA. (\$10,000)
- Construct curb extensions to reduce pedestrian crossing distances (\$66,000)
- Extend median on north and south legs to provide pedestrian refuge (\$43,000)

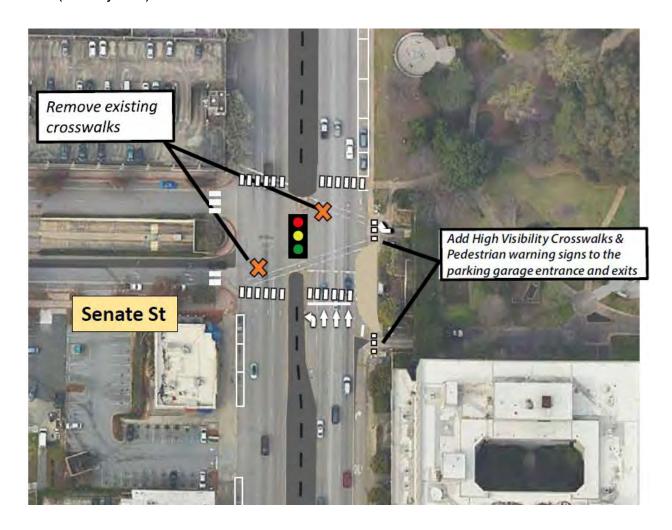
3.3.11 Assembly Street at Senate Street

Concerns:

- Diagonal crosswalks increase pedestrian exposure clearance time requirements.
- Light traffic observed utilizing the parking garage egress on the east leg. Note that the westbound left turn is currently restricted during the evening peak period.
- Signal currently uncoordinated with adjacent traffic signals.
- Pedestrian pushbutton on the south leg not ADA accessible.

Considerations:

Mid-Term:


Geometric Design

- Provide two perpendicular crosswalks on the north and south side of the Senate Street intersection (\$11,200)
- Construct curb extensions to reduce pedestrian crossing distances (\$53,000)
- Add high visibility crosswalks and pedestrian warning signs to the parking garage entrance and exit. (\$5,300)

Long-Term:

Geometric Design

 Full median closure along Assembly Street through the intersection to prohibit left turn movements and reduce conflicts between vehicles and pedestrians (\$72,000)

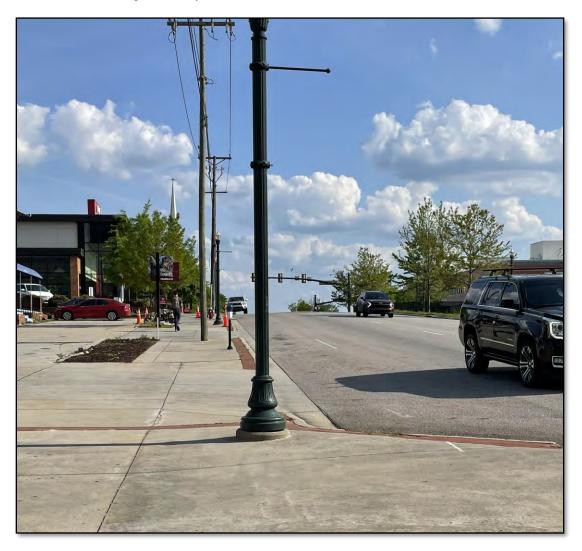
3.3.12 Assembly Street at Pendleton Street

Concerns:

- Drivers unable to see signal indication when staging in intersection to make permissive left turn movements along Assembly Street.
- Parking is provided in the median with no pedestrian actuation abilities from the median.

Considerations:

Mid-Term:


- Geometric Design
 - Extend north leg median to provide refuge for pedestrians (\$19,600)
- Traffic Control
 - o Install flexible delineator posts in the median on the east leg of Pendleton Street for access management (\$8,000)
 - o Implement protected left turn phasing in both directions along Assembly Street (\$20,000)

3.3.13 Assembly Street at College Street

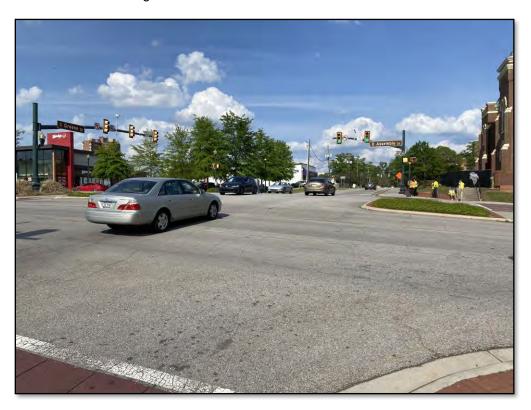
Concerns:

- Multiple wide access points for business on southeast corner increase conflict zones.
- Drivers unable to see signal indication when staging in intersection to make permissive left turn movements along Assembly Street.

Considerations:

Mid-Term:

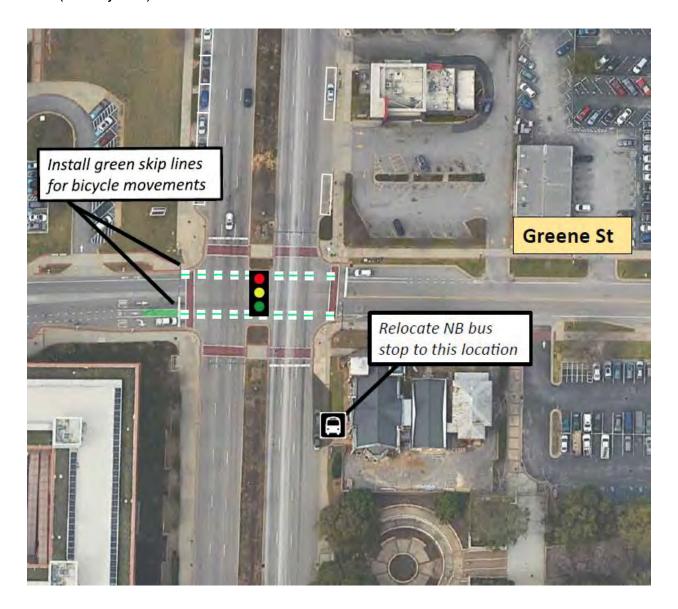
• Traffic Control


- Install flexible delineator posts in the median on the east leg of College Street for access management (\$8,000)
- o Implement protected left turn phasing in both directions along Assembly Street (\$20,000)

3.3.14 Assembly Street at Greene Street

Concerns:

• The vertical crest curve alongside-street approaches limit sight distance to bike lanes on the far side of the intersection. Pavement markings are needed to better delineate side street vehicle bike travel through the intersection.


Considerations:

Short-Term:

- Traffic Control
 - o Install green skip lines through the intersection for bicycle movements (\$6,500)

Mid-Term:

- Transit
 - o Relocate northbound bus stop closer to intersection (\$23,000)

3.3.15 Assembly Street at Devine Street

Concerns:

• The presence of a pedestrian tunnel is not apparent to pedestrians. Improved way finding could improve tunnel utilization and reduce conflicts at adjacent intersections.

Considerations:

Short-Term:

- Traffic Control
 - o Improve wayfinding for pedestrian tunnel (\$2,000)

Mid-Term:

- Geometric Design
 - Add high visibility crosswalk across Devine Street (\$7,800)

Road Safety Audit Report SC 48 (Assembly Street)

3.3.16 Assembly Street at Blossom Street

Concerns:

- Pedestrians observed crossing Assembly Street outside of marked crossing to reach mid-block bus stops.
- · Pavement markings are faded.
- Driver expectancy issues with northbound left turn lane. Some motorists observed mistaking the dual northbound left red signal indication as a dual left turn movement.
- Significant queuing observed for northbound turn movement. Friction observed with through movements at the back of queue affecting operations at signal.
- Pedestrian countdown timer not working on west leg crossing.

Considerations:

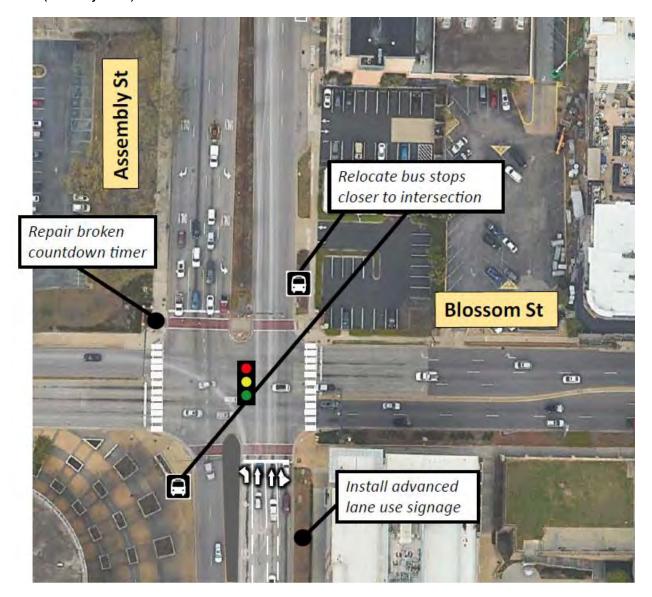
Short-Term:

Maintenance

- Repair broken countdown timer for pedestrian signals along western leg (\$4,500)
- Update faded pavement markings (\$7,500)

• Traffic Control

- o Install northbound through arrow pavement markings on the inner most through lane to reinforce lane assignments (\$3,250)
- o Install advanced lane use signage on the northbound approach (\$9,000)


Mid-Term:

Transit

Relocate northbound and southbound bus stops closer to intersection (\$41,000)

Geometric Design

Modify median alignment to extend the length of the northbound left turn lane (\$112,000)

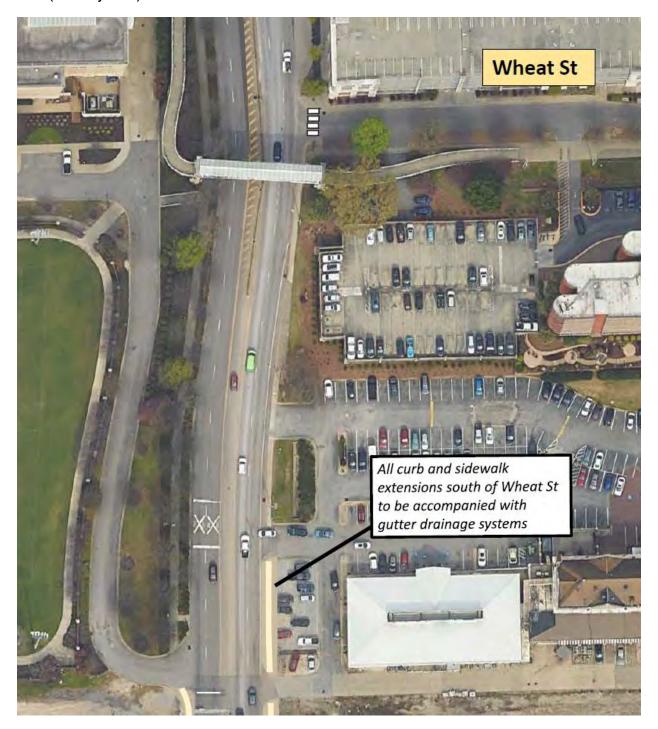
3.3.17 Assembly Street at Wheat Street

Concerns:

- Gap in sidewalk present on southeast curb due to a drainage issue.
- Pedestrian facilities lacking with discontinuous pedestrian infrastructure.
- Multiple pedestrians observed crossing mid-block.

Considerations:

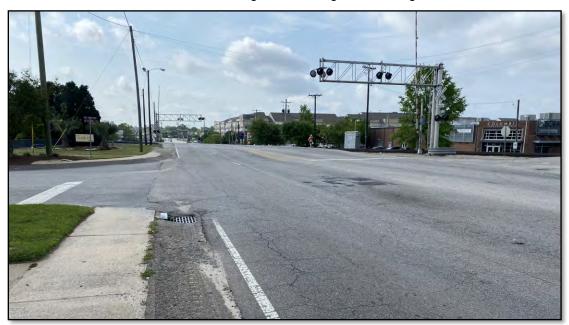
Short-Term:


Maintenance

Repair gap in sidewalk on southeast corner (\$7,300)

Mid-Term:

Geometric Design


- Construct continuous curb and gutter along Assembly Street south of the intersection (\$84,000)
- Add high visibility crosswalk across Wheat Street (\$7,800)

3.3.18 Assembly Street at Catawba Street

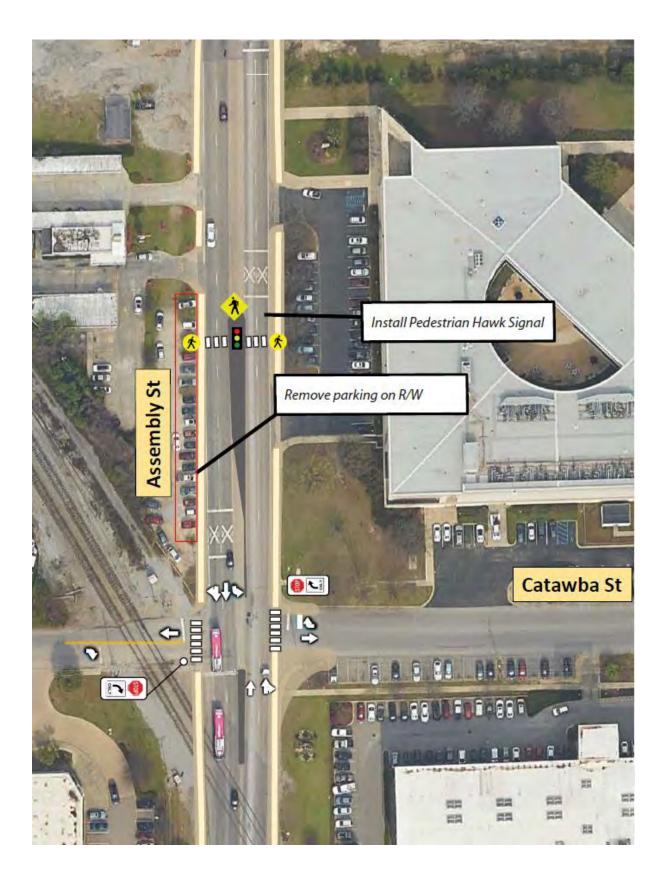
Concerns:

- Pedestrian activity observed with commercial and institutional uses on both sides of Assembly Street.
- Sidewalks absent or discontinuous.
- Pedestrian space and conflict zones not well defined with no marked pedestrian crossings.
- Open typical section contributes to low pedestrian comfort levels.
- Side-street intersection wide with skewed grade crossings intersecting.

Considerations:

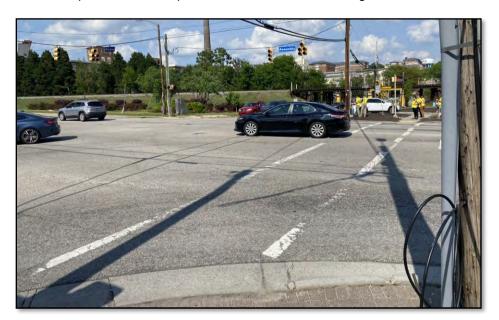
Mid-Term:

• Geometric Design


- Construct appropriate median or channelization islands to restrict side street access to RIRO (\$45,000)
- o Improve roadway with sidewalk connections along both directions of Assembly Street north, south, and through intersection (\$150,000)

• Traffic Control

 Alternate 1. Provide a signal-controlled pedestrian crossing at Catawba Street (\$243,000)


Alternate 2. Provide a mid-block to the north of Catawba Street (\$283,000)

3.3.19 Assembly Street at Whaley Street

Concerns:

- Motorists known to use commercial parking lot on the southeast quadrant to bypass queues and delays when trains crossing downstream.
- Pedestrian facilities discontinuous.
- Expansive curb cuts increase pedestrian and vehicular conflict zones.
- Pavement markings are faded.
- Pedestrian pushbuttons not provided on side-street crossings.

Considerations:

Short-Term:

Maintenance

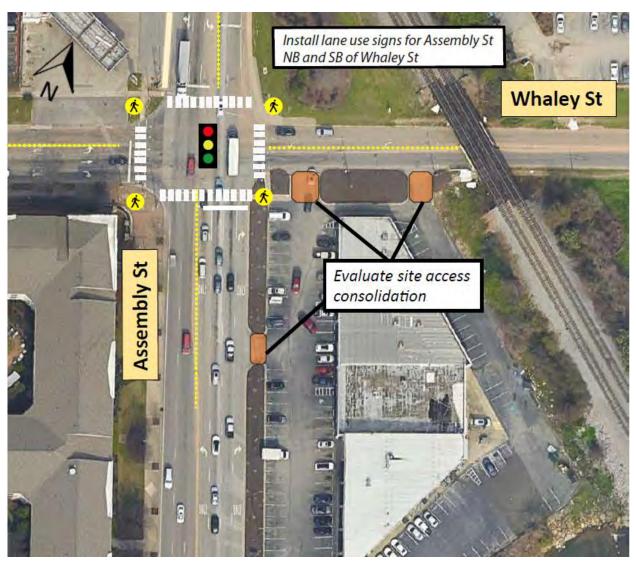
Update faded pavement markings (\$6,500)

Mid-Term:

Traffic Control

- o Install flexible delineator posts in the median on all intersection approaches for access management (\$8,500)
- Install pushbuttons for side-street crossings (\$17,000)
- o Implement split-phasing for the side-street approaches (\$20,000)
- Install lane use signs for Assembly Street northbound and southbound of Whaley Street (\$8,700)

Long-Term:


Operations

o Access point consolidation in southeast quadrant of the intersection (\$30,000)

• Geometric Design

Improve roadway with sidewalk connections along both directions of Assembly

Street north, south, and through intersection (\$88,000)

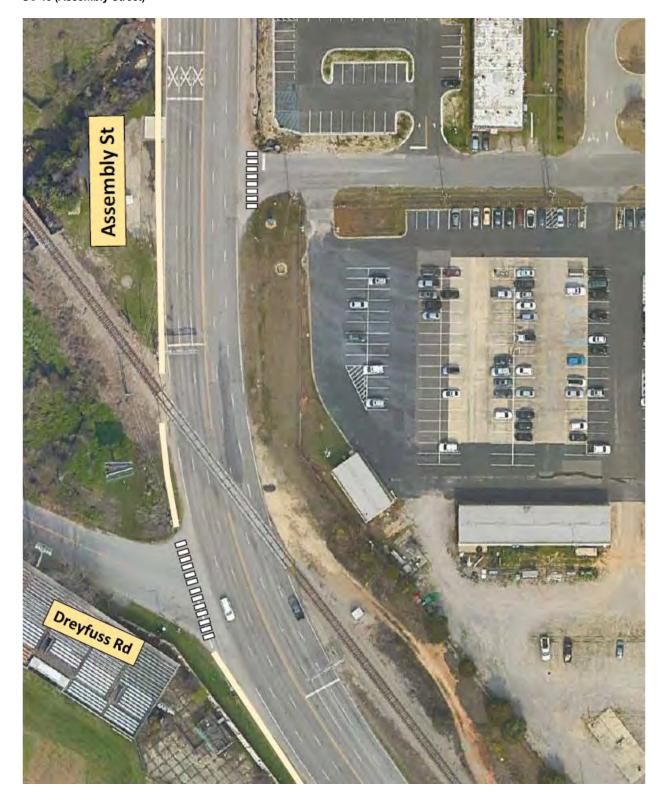
3.3.20 Assembly Street at Flora Street and Dreyfuss Road

Concerns:

- No pedestrian facilities available.
- Roadway appears to have excess capacity.
- · Left turns from shared turn lanes.
- Increased vehicle speeds through this section.

Considerations:

Mid-Term:


Geometric Design

- Construct a sidewalk along the west side of Assembly Street (\$259,000)
- Construct high visibility crosswalks at Flora Street and Dreyfuss Road (\$7,800)

Long-Term:

• Geometric Design

 Reduce the number of travel lanes from six lanes to five lanes and repurpose the excess pavement into a Two-Way Left-Turn Median. Pedestrian infrastructure improvements will also be implemented (\$181,000)

3.3.21 Assembly Street at Rosewood Drive

Concerns:

- Crosswalks provided at intersection, but sidewalks are absent on Assembly Street.
- Pedestrian heads present on south and northbound approaches with no crosswalk present.
- High speeds with poor yield compliance to pedestrian movements along channelized right turn movements.
- High potential for queuing through grade crossing with current traffic controls and signal phasing.

Considerations:

Short-Term:

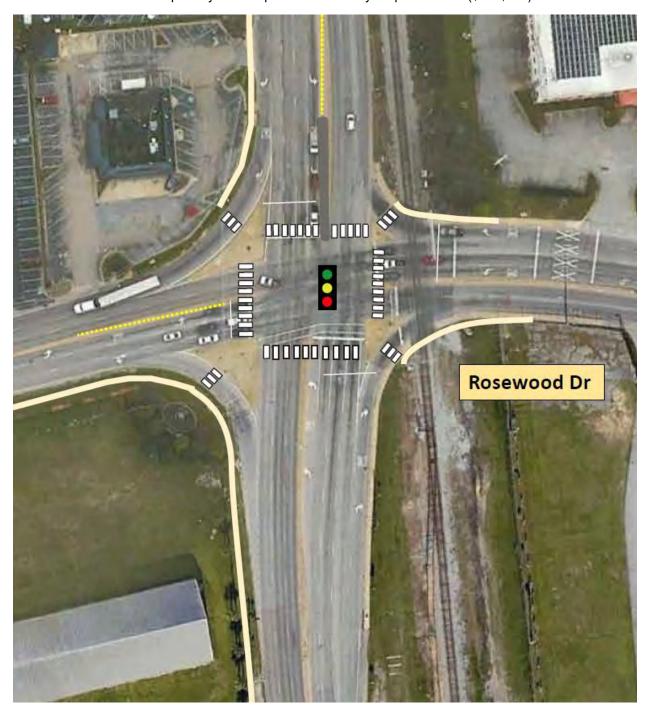
Maintenance

Update faded pavement markings (\$9,000)

Mid-Term:

Geometric Design

- Install crosswalk markings across all approaches and ADA ramps on all intersection legs (\$88,000)
- Construct a sidewalk along the south side of Assembly Street from Rosewood Drive to just past Flora Street (\$266,000)


Traffic Control

eastbound throughs along Rosewood Drive. Also, implement protected-only phasing for southbound left-turns along Rosewood Drive to eliminate queueing on the railroad tracks (\$70,000)

Long-Term:

• Geometric Design

Remove channelized right-turns, tighten curb radii, and reduce turning speeds to improve yield compliance and safety for pedestrians (\$315,000)

4. Crash Reduction Analysis

Crash Modification Factors (CMF) are research-backed factors that indicate the proportional increase or decrease in expected crashes because of a specific countermeasure implementation. They help quantitively estimate a proposed infrastructure treatment's effectiveness at improving safety. CMF are largely documented in FHWA's CMF Clearinghouse, which is continuously updated according to latest research findings. Each CMF value housed in the Clearinghouse is given a star rate according to the quality or reliability of the study. Star ratings are based on study design, sample size, statistical methodology, and statistical significance. They range from 1 to 5, with 5 being the highest/best rating. Mead & Hunt reviewed the list of countermeasures developed for Assembly Street against available CMF data. Recommended treatments with documented CMF research given a star rating of 3 or higher is summarized in Table 1.

Note, the treatments recommended for Assembly Street were largely focused on improving accommodations for pedestrians. Expanded median refuge islands and curb extensions were recommended corridor-wide, but unfortunately documented CMF data for pedestrian treatments is largely lacking. Although not included in the crash analysis section of this report, there is widespread research that suggests curb extensions and median refuge islands improve safety at intersections/corridors for the following reasons:

- Curb extensions reduce pedestrian crossing distance, thus reducing exposure time for pedestrian-vehicle interactions.
- Curb extensions increase pedestrian visibility.
- Curb extensions encourage slow turning movements for vehicles by decreasing the curb radii at an intersection.
- Median refuge islands give pedestrians a safe place to wait if they are only comfortable crossing one direction of traffic at a time.
- Median refuge islands encourage slower vehicular speeds by narrowing the usable roadway width.

TABLE 1: AVAILABLE CMF DATA FOR ASSEMBLY STREET

Potential Treatment	Timeframe	CMF	Standard Error	Crash Type	Crash Severity
Install backplates where absent	Short-Term	0.85	0.005	All	All
Institute Leading Pedestrian Intervals	Short-Term	0.81	0.07	Vehicle/ Pedestrian	All
Upgrade signalized left turn movements to Protected Only phasing	Mid-Term	0.01	0.03	Angle	All
Institute "No Turn on Red"	Mid-Term	0.98	1	All	All
Closure/consolidation of driveways at intersections	Mid-Term	0.82	0.08	All	All
Upgrade span wire signal design to mast arm	Long-Term	0.97	0.069	All	All
Remove right turn lane channelization, where present	Long-Term	0.56	0.089	All	All
Explore Road Diet*	Long-Term	0.62	0.13	All	All

^{*}Note: to date, crash reduction research has only focused on 4-lane to 3-lane reductions

MP 0.00 - 2.50

Most of the time, road safety audit projects propose several countermeasures be implemented simultaneously at one location. When estimating the combined effectiveness of multiple safety treatments at one location, CMF values may be multiplied together only if the crash types/severities to be addressed with each treatment are independent of one another. For example, backplate installation (CMF = 0.85) and mast arm conversion (CMF=0.97) both target increased signal visibility for drivers and decreased crash frequency and severity for all users and types. Instead of multiplying the two factors together, the CMF for backplate installation should be applied because it will show the greater crash reduction. Additionally, no more than 3 CMFs should be combined on any project regardless of crash type/severity. Following these guidelines ensures a project does not over-estimate expected crash reduction.

With the above information in mind, the following three CMFs were chosen to be applied to Assembly Street. These CMF values were chosen because they offer the highest crash reduction and have recommended widespread implementation across much of the corridor.

- Install Backplates where absent.
- Upgrade all signalized intersections to Protected Only Left Turn phasing.
- Institute Leading Pedestrian Interval phasing at all signalized intersections.

Crash reduction estimates are summarized in Table 2.

TABLE 2: EXPECTED CRASH REDUCTION ON ASSEMBLY STREET

Location	2018-2022 Crashes	Average Total Crashes Per Year	Expected Crashes Per Year After Implementation	Reduction of Crashes Per Year
Install Backplates	: CMF = 0.85 (al	l crash types, se	everities)	
Assembly St - Elmwood to Rosewood*	665	166.25	141.31	24.94
Institute Leading Pedestrian Int	ervals : CMF = 0	.81 (vehicle/pe	destrian crashes only	y)
Assembly St - Elmwood to Rosewood**	24	6.00	4.86	1.14
Upgrade left turn movem	ents to Protect	ed Only (left tu	rn crashes only)	
Assembly St - Elmwood to Rosewood***	142	35.50	0.36	35.15

^{*}excludes crashes at all unsignalized intersections and signalized intersections already equipped with backplates

Installing backplates at all signalized intersections where not currently present can be expected to reduce the annual crash frequency by nearly 25 crashes per year. Instituting leading pedestrian interval at the signalized intersections can be expected to reduce the annual crash frequency by just over one pedestrian crash per year. Upgrading all signalized intersections to include protected left turn phasing can be expected to reduce the annual crash frequency by just over 35 crashes per year. Combined, these treatments can be expected to reduce the total annual crash frequency on Assembly Street to over 61 crashes per year.

^{**}excludes pedestrian crashes at unsignalized locations

^{***}excludes crashes at unsignalized intersections and signalized Blossom St, which already has protected only left turn movements

5. Summary of Costs

This section provides planning-level cost estimates only for the recommended improvements. The cost estimates are for construction cost estimates only, and do not include any additional cost considerations for items such as additional engineering, design, r/w, utilities, construction inspection, etc.

Corridor Wide (Section 3.2)			
Short-Term		_	¢1 10F 000 00
		=	\$1,105,000.00
Mid-term		=	\$5,957,600.00
Long-Term		=	\$6,276,000.00
	Total	=	\$13,338,600.00
Assembly St at Elmwood Ave Im	provements (Section 3.3.1)		
Short-Term		=	\$26,100.00
Mid-term		=	\$96,000.00
Long-Term		=	\$0.00
	Total	=	\$122,100.00
Assembly St at Calhoun St Impro	ovements (Section 3.3.2)		
Short-Term		=	\$11,500.00
Mid-term		=	\$113,000.00
Long-Term		=	\$0.00
	Total	=	\$124,500.00
Assembly St at Richland St Impro	ovements (Section 3.3.3)		
Short-Term		=	\$0.00
Mid-term		=	\$152,200.00
Long-Term		=	\$0.00
	Total	=	\$152,200.00
Assembly St at Laurel St Improve	ements (Section 3.3.4)		
Short-Term		=	\$6,500.00
Mid-term		=	\$113,500.00
Long-Term		=	\$0.00
	Total	=	\$120,000.00
Assembly St at Blanding St Impro	ovements (Section 3.3.5)		
Short-Term		=	\$0.00
Mid-term		=	\$148,000.00
Long-Term		=	\$0.00
	Total	=	\$148,000.00
Assembly St at Taylor St Improve	ements (Section 3.3.6)		
Short-Term		=	\$2,840.00
Mid-term		=	\$232,000.00
Long-Term		=	\$0.00
J	Total	=	\$234,840.00
			, , , , , , , , , , , , , , , , , , , ,

Assembly St at Hampton St Improvements (Section	on 3.3.7)		
Short-Term		=	\$2,840.00
Mid-term		=	\$73,000.00
Long-Term		=	\$0.00
	Total	=	\$75,840.00
Assembly St at Washington St Improvements (Sec	ction 3.3.8)		
Short-Term		=	\$0.00
Mid-term		=	\$121,000.00
Long-Term		=	\$0.00
	Total	=	\$121,000.00
Assembly St at Lady St Improvements (Section 3.3	3.9)		
Short-Term		=	\$0.00
Mid-term		=	\$97,000.00
Long-Term		=	\$0.00
	Total	=	\$97,000.00
Assembly St at Gervais St Improvements (Section	3.3.10)		
Short-Term		=	\$0.00
Mid-term		=	\$119,000.00
Long-Term		=	\$0.00
	Total	=	\$119,000.00
Assembly St at Senate St Improvements (Section	3.3.11)		
Short-Term		=	\$0.00
Mid-term		=	\$69,500.00
Long-Term		=	\$72,000.00
	Total	=	\$141,500.00
Assembly St at Pendleton St Improvements (Sect	ion 3.3.12)		
Short-Term		=	\$0.00
Mid-term		=	\$47,600.00
Long-Term		=	\$0.00
	Total	=	\$47,600.00
Assembly St at College St Improvements (Section	3.3.13)		
Short-Term		=	\$0.00
Mid-term		=	\$28,000.00
Long-Term		=	\$0.00
	Total	=	\$28,000.00
Assembly St at Greene St Improvements (Section	3.3.14)		
Short-Term		=	\$6,500.00
Mid-term		=	\$23,000.00
Long-Term		=	\$0.00
	Total	=	\$29,500.00

Assembly St at Devine St Improvements (Sect	ion 3.3.15)		
Short-Term	•	=	\$2,000.00
Mid-term		=	\$7,800.00
Long-Term		=	\$0.00
	Total	=	\$9,800.00
Assembly St at Blossom St Improvements (Se	ction 3.3.16)		
Short-Term		=	\$24,250.00
Mid-term		=	\$153,000.00
Long-Term		=	\$0.00
	Total	=	\$177,250.00
Assembly St South of Wheat St Improvement	s (Section 3.3	.17)	
Short-Term		=	\$7,300.00
Mid-term		=	\$91,800.00
Long-Term		=	\$0.00
	Total	=	\$99,100.00
Assembly St South of Catawba St Improveme	nts (Section 3	3.3.18)	
Short-Term		=	\$0.00
Mid-term		=	\$438,000.00
Long-Term		=	\$0.00
	Total	=	\$438,000.00
Assembly St at Whaley St Improvements (Sec	tion 3.3.19)		
Short-Term		=	\$6,500.00
Mid-term		=	\$54,200.00
Long-Term		=	\$118,000.00
	Total	=	\$178,700.00
Assembly St at Dreyfuss Rd Improvements (So	ection3.3.20)		
Short-Term		=	\$0.00
Mid-term		=	\$266,800.00
Long-Term		=	\$181,000.00
	Total	=	\$447,800.00
Assembly St at Rosewood Dr Improvements (Section 3.3.2	1)	
Short-Term		=	\$9,000.00
Mid-term		=	\$424,000.00
Long-Term		=	\$315,000.00
	Total	=	\$748,000.00

Short Term Improvements Costs

Location	Costs
Corridor Wide Short Term Improvements	\$1,105,000.00
Assembly St at Elmwood Ave Improvements	\$26,100.00
Assembly St at Calhoun St Improvements	\$11,500.00
Assembly St at Richland St Improvements	\$0.00
Assembly St at Laurel St Improvements	\$6,500.00
Assembly St at Blanding St Improvements	\$0.00
Assembly St at Taylor St Improvements	\$2,840.00
Assembly St at Hampton St Improvements	\$2,840.00
Assembly St at Washington St Improvements	\$0.00
Assembly St at Lady St Improvements	\$0.00
Assembly St at Gervais St Improvements	\$0.00
Assembly St at Senate St Improvements	\$0.00
Assembly St at Pendleton St Improvements	\$0.00
Assembly St at College St Improvements	\$0.00
Assembly St at Greene St Improvements	\$6,500.00
Assembly St at Devine St Improvements	\$2,000.00
Assembly St at Blossom St Improvements	\$24,250.00
Assembly St South of Wheat St Improvements	\$7,300.00
Assembly St South of Catawba St Improvements	\$0.00
Assembly St at Whaley St Improvements	\$6,500.00
Assembly St at Dreyfuss Rd Improvements	\$0.00
Assembly St at Rosewood Dr Improvements	\$9,000.00
Total	\$1,210,330.00

Planning level estimate for construction costs only: contingencies, design, CE&I and utilities are not included Escalation due to inflation should be expected after 2024

Mid Term Improvements Costs

Location	Costs
Corridor Wide Mid Term Improvements	\$5,957,600.00
Assembly St at Elmwood Ave Improvements	\$96,000.00
Assembly St at Calhoun St Improvements	\$113,000.00
Assembly St at Richland St Improvements	\$152,200.00
Assembly St at Laurel St Improvements	\$113,500.00
Assembly St at Blanding St Improvements	\$148,000.00
Assembly St at Taylor St Improvements	\$232,000.00
Assembly St at Hampton St Improvements	\$73,000.00
Assembly St at Washington St Improvements	\$121,000.00
Assembly St at Lady St Improvements	\$97,000.00
Assembly St at Gervais St Improvements	\$119,000.00
Assembly St at Senate St Improvements	\$69,500.00
Assembly St at Pendleton St Improvements	\$47,600.00
Assembly St at College St Improvements	\$28,000.00
Assembly St at Greene St Improvements	\$23,000.00
Assembly St at Devine St Improvements	\$7,800.00
Assembly St at Blossom St Improvements	\$153,000.00
Assembly St South of Wheat St Improvements	\$91,800.00
Assembly St South of Catawba St Improvements	\$438,000.00
Assembly St at Whaley St Improvements	\$54,200.00
Assembly St at Dreyfuss Rd Improvements	\$266,800.00
Assembly St at Rosewood Dr Improvements	\$424,000.00
Total	\$8,826,000.00

Planning level estimate for construction costs only: contingencies, design, CE&I and utilities are not included Escalation due to inflation should be expected after 2024

Long Term Improvements Costs

Location	Costs
Corridor Wide Long Term Improvements	\$6,276,000.00
Assembly St at Elmwood Ave Improvements	\$0.00
Assembly St at Calhoun St Improvements	\$0.00
Assembly St at Richland St Improvements	\$0.00
Assembly St at Laurel St Improvements	\$0.00
Assembly St at Blanding St Improvements	\$0.00
Assembly St at Taylor St Improvements	\$0.00
Assembly St at Hampton St Improvements	\$0.00
Assembly St at Washington St Improvements	\$0.00
Assembly St at Lady St Improvements	\$0.00
Assembly St at Gervais St Improvements	\$0.00
Assembly St at Senate St Improvements	\$72,000.00
Assembly St at Pendleton St Improvements	\$0.00
Assembly St at College St Improvements	\$0.00
Assembly St at Greene St Improvements	\$0.00
Assembly St at Devine St Improvements	\$0.00
Assembly St at Blossom St Improvements	\$0.00
Assembly St South of Wheat St Improvements	\$0.00
Assembly St South of Catawba St Improvements	\$0.00
Assembly St at Whaley St Improvements	\$118,000.00
Assembly St at Dreyfuss Rd Improvements	\$181,000.00
Assembly St at Rosewood Dr Improvements	\$315,000.00
Total	\$6,962,000.00

Planning level estimate for construction costs only: contingencies, design, CE&I and utilities are not included Escalation due to inflation should be expected after 2024

6. General Recommendations

6.1 Education and Enforcement

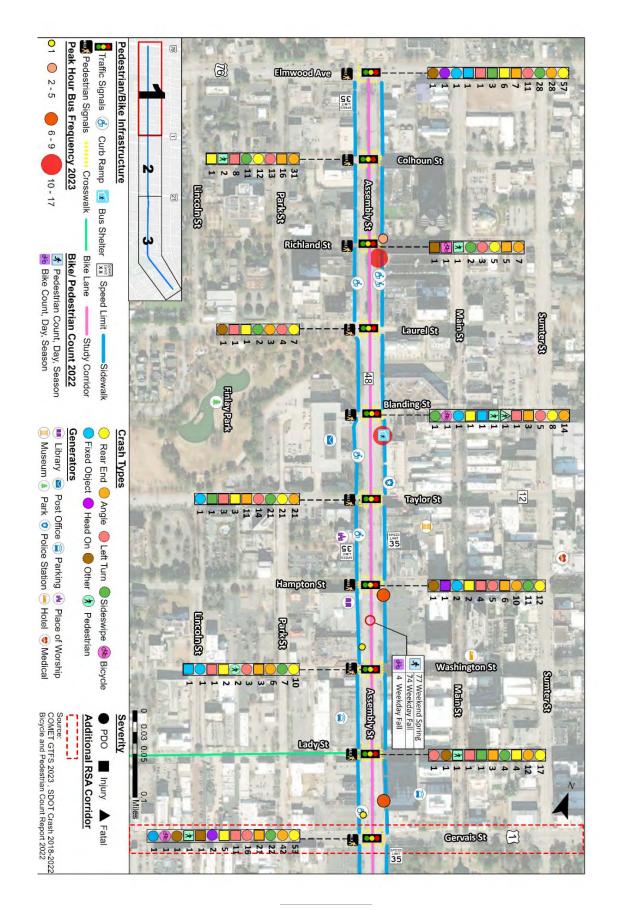
In addition to the engineering recommendations, education and enforcement also play a vital roles with improving safety. A road safety campaign followed by intermittent enforcement is recommended if traffic control devices continue to be ignored after physical improvements are implemented.

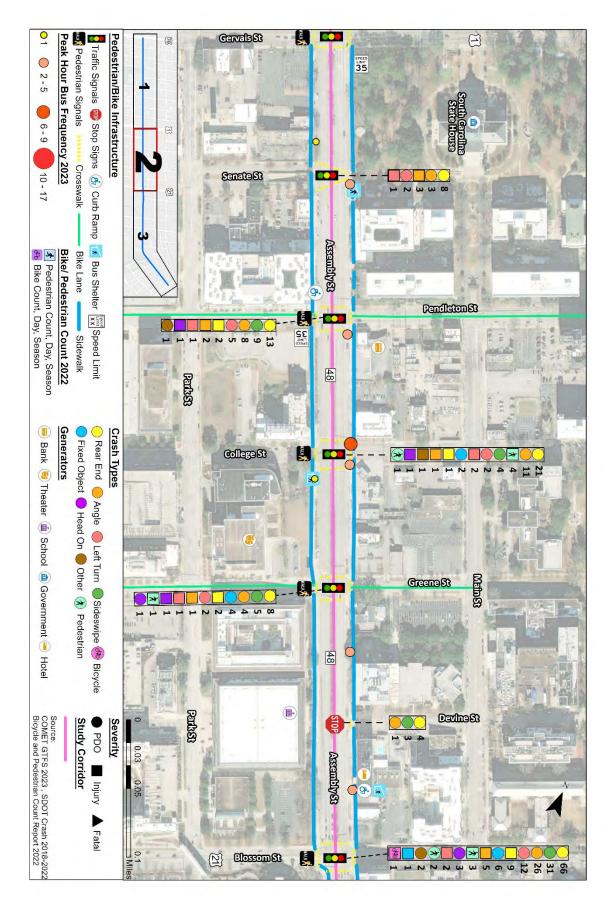
Appendix A – Audit Meeting Sign-in Sheets

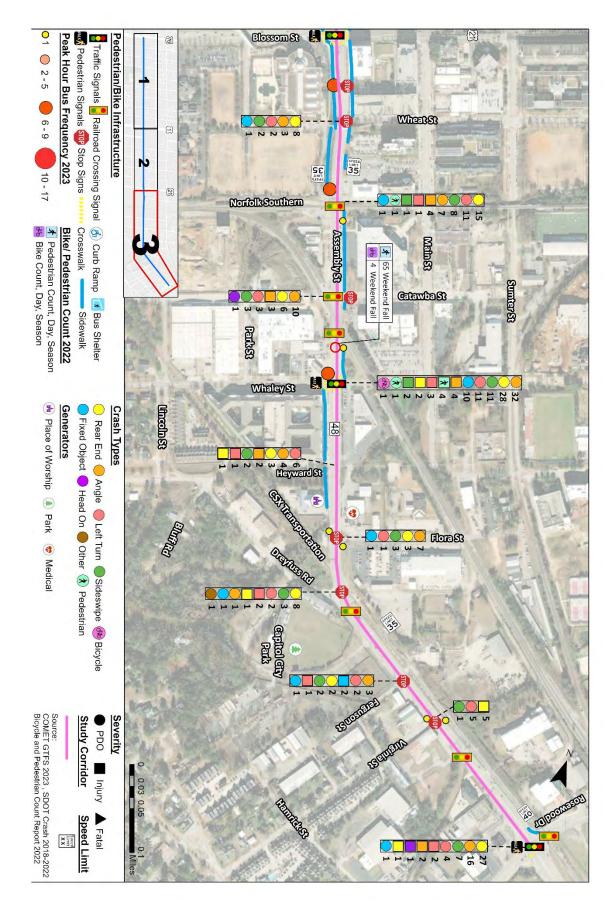
Sign In Sheet Pre-Audit Meeting - Assembly Street 955 Park Street, Columbia SC

4/5/2023

ts.	14	13	12	11	10	16	Del	7	01	in	4	w	N	H	
15 Carolum Fisher	WICK MATTHEW	CHRES ULMBR	Leich Delian	henda States	Evan Johnson	Douglas Giovanthi	Robbie Anick	DUNCAN SMALTH	Moun HMan	John for Satterthin	Kaylon Maetre	Carol Joney	Josh Coulson	Grace Tapper	Name
cavolun-fishing dol- gov	NMATTHEWS @AMTENGNEERING, COM	Culmeag Antevanuenos, um	Leigh, deform ecolumbiasc. gov	Tuenda statler & columbos son	johnsonea@scabt.arg	GIOVANETO @ SCOOT, ORG	amick TRO SCOUT . als	SMITHD @SCDOT. OFG	Hixon Adam@richlandcountryc.gor 803-281-1877 Ruchend County	John to Satterthingthe joniter satternuite more 803:520:2985	Meetzekkill sodot.org	arol Jones and jones a med bunt can bor 500-396	Josh. Coulson@ redhut.com (443) 741-361	Toylor EAR SCOOT, one	Email
503-765-5464 FH	828-391-9W	808-760-444J	N84-345-988	Jeco-545 1	3999-ESE	737-1868	797-1523	737-1418	1781-18C-508	803:520:298	×803-737-6713	803 520-396	(19%-186 (EHH)	737-1103	Phone Number
FHWA	AMT	AMT	CoC	CoC	SCOOT	SCOOT	SCOOT	SCDOT	Richard County	3 M^#	CA	My #	Med Hunt	20002	Agency

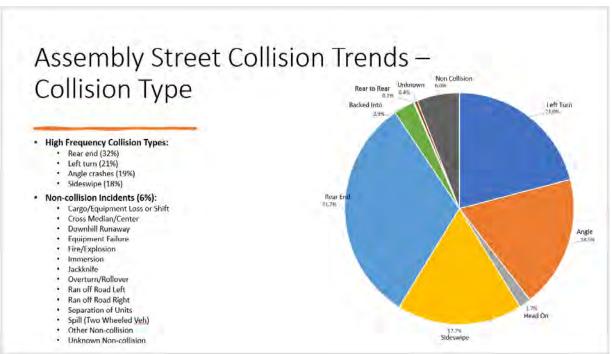

Sign In Sheet Pre-Audit Meeting - Assembly Street 955 Park Street, Columbia SC 4/5/2023


 _	 	 	-	 	-	_	 	_		
					*		•	Isiah Bowmen	RECT CHAIN	Name
	3							bowman ib@sc do+,059	Robert Whall @ Chusiascigor 803429 7927 Blooms	Email
								803-137-1947 SCDC	803427 7927	Phone Number
					0			SCDOT	Chros PD	Agency


Sign In Sheet Post Audit Meeting - Assembly Street 955 Park Street, Columbia SC 4/6/2023

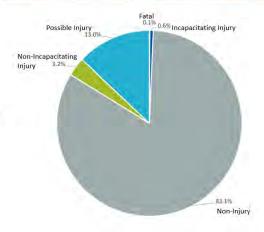
10 2 - LUM
1 to 1 to 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
are 1. Jones on mordhand con 25. 1000
Hixon. Adam@ Michland County SC. 901
NMATTHEWS @ AMTENGINEERIM. CO.
CULNERS AMENIANERAN, COM
lucinda statlere dumbius, por 3035450009
leighdefirth/coolumbers .cxx
Johnsoneal scotorory
Amileiro Scoutors
Sallase @ Sodot. org
Bowman 1 b@SCdot.org
MeetzekRausodot.gra
Cavolun Asher@ dot gov
efjones ofme. sc.edu

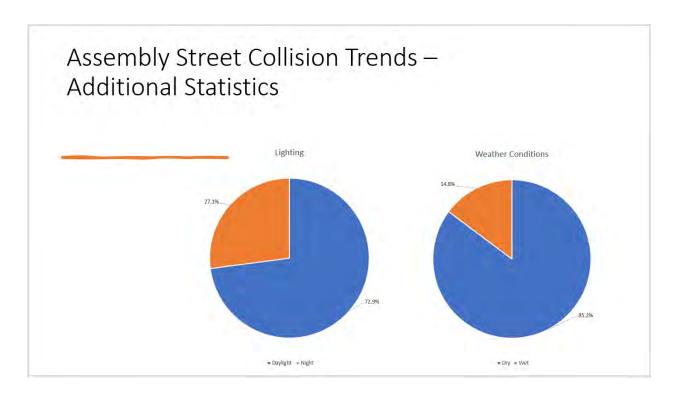
Appendix B – RSA Summary Package



	Post-Construction Phase: Prompt List 6 - Existing Road Audit (Page 1 of 2)							
			Road Function, Class	sification, Environ				
Road Alignment and Cross Section	Auxiliary Lanes	Intersections	Interchanges	Signs and Lighting	Marking and Delineation	Barriers and Clear Zones	Traffic Signals	Pedestrians and Bicyclists
Visibility, sight distance	Tapers	Location	Visibility, sight distance	Lighting	General issues	Clear zones	Operations	General issues
Design speed	Shoulders	Visibility, sight distance	Lanes, shoulders	General signs issues	Centerlines, edgelines, lane lines	Barriers	Visibility	Pedestrians
Speed limit/speed zoning	Signs and markings	Signing and marking	Signing, marking, delineation	Sign legibility	Guideposts and reflectors	End treatments /Crash cushions	Placement of signal heads	Bicyclists
Passing	Turning traffic	Layout and 'readability' (perception) by drivers	Pedestrians, bicyclists	Sign supports	Curve warning and delineation	Pedestrian railing		Public transport
'Readability' (perception) of the alignment by drivers		Pedestrians, bicyclists	Lighting			Visibility of barriers and fence		
Human factors		Lighting						
Widths								
Shoulders								
Cross slopes								
Side slopes								
Drains								
Combinations of features								

	Post-Cor	struction Phase: Prompt	List 6 - Existing Ro	oad Audit (Page 2 o	f 2)	
		Road Function, Cla	ssification, Environmen			
Older Drivers	Bridges and Culverts	Pavement	Parking	Provision For Heavy Vehicles	Floodways and Causeways	Other Safety Issues
Turning operations (receiving lane widths, radii)	Design features	Pavement defects		Design issues	Ponding and flooding	Landscaping
Channelization, opposing left turn lanes	Barriers	Skid resistance		Pavement/shoulder quality	Safety of devices	Temporary works
Sight triangles	Pedestrian and recreational facilities, delineation	Ponding/icing/snow accumulation				Headlight glare
Signing, marking and delineation		Loose stones/material				Roadside activities
Traffic signals		Manholes				Signs of possible problems (pavement, roadside)
						Rest areas
						Environment
						Median curbing

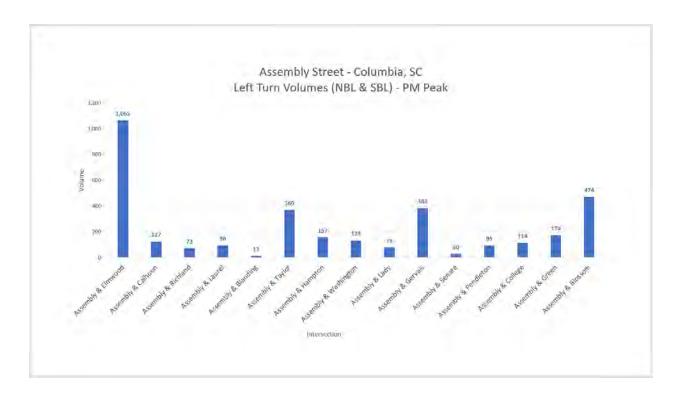

Appendix C – Crash Data

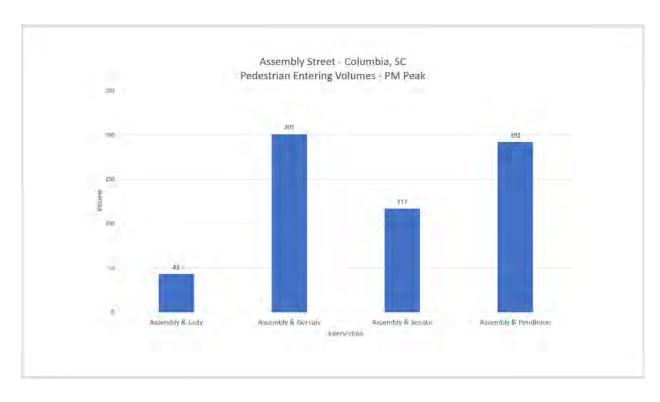

Assembly Street Collision Trends – Severity

- Non-injury crashes = 83%
- One (1) fatal collision occurred in the time period selected (2018 – 2022)
 - · Pedestrian collision resulting in a fatality
 - Crash occurred on Assembly Street between Blanding and Taylor Streets

- Improper driving behavior was the highest primary contributing factor (64%)
 - This includes factors such as failing to yield ROW, following too closely, improper lane use, etc.
- Distracted driving (16%) and excessive speed (15%) were the next two highest primary contributing factors

Assembly Street Collision Trends – Primary Contributing Factor


Appendix D – Speed Study Data



SC 48 (Assembly Street)

MP 0.00 - 2.50

SC 48 (Assembly Street)

MP 0.00 - 2.50

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Unitable Count	Speed Data	Direction
87	3A G MVH	n.
38	37.0 MPH	0.
3/9	29.0 MPH	n.
90	29,0 MFH	- 10
93	28.0 M/H	15
92	30.0 MPH	n.
93	25.0 MPH	
94.	SKO MPH	in.
35	36/3 W/H	
36	25.0 MFH	
97	24.0 MPH	n.
58	29.0 MPH	D-
99	28.0 MPH	D
100	25.0 MPH	n.
101	29 U MVH	b.
107	28.0 MPH	0.
108	28.0 MFH	D-
104	31.0 MPH	- 12
105	34.0 M/H	10'
106	28.0 M/H	D-
107	31.0 MPH	
108	31.0 MPH	10.
109	29.0 MPH	2.
110	ALO MPH	3
111	31.0 MPH	- 4
112	SHO MPH	
315	29 /0 N/7H	41
114	31.0 MPH	3
115	35.0 MPH	- 4
124	30,0 MPH	- 5
337	38.0 MFH	- 4
318	29.0 MPH	- 5
119	28.0 MPH	- 3
120	29.0 MINI	- 1
121	23.0 MFH	- 1
122	39.0 MPH	3
123	28.0 MBH	4
124	28.0 MPH	- 1
125	31.0 MPH	- 5
136	31.0 M/H	- 6
127	33.0 MPH	X.
128	32.0 MPH	- 5
129	31.0 MPH	- 81

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Vehicle	Speed Data	Charles and	
Count	Obesic trace	ENNICHOR	
87	42.0 MPB	-0.	
88	45.0 MPH		
. 89	35.0 MPH.		
90	41.0 MPH		
93	53.0 MPH	- 0	
92	BLO MPH	- 6	
95	39.0 MPH		
94	35 O MPH	- 1	
95	SE O MPH	- 6	
96	37.0 MPH	6.	
97	28.0 MPH.		
98	31.0 MPH	- 6	
99	SER MPB	- 0	
100	BLO MPH.		
101	35.0 MPI	- 8	
102	34.0 MPH		
103	28.0 MPH	4	
104	57.0 MPH	- 1	
105	36.0 MPH	- 1	
106	25.0 MPM		
107	34.0 MPH	- 1	
108	BELO MPH	X.	
109	BLG MPU	- 4	
110	\$5.0 MPH	- 1	
111	34.0 MPH	- 1	
112	ST.O MPH	14	
113	BE D MPH	-	
114	BEO MPH	16.	
115	37.0 MPH	- 1	
116	35 () NAPH	-	
117	36.0 M99	- 4	
118	\$6.0 MpH	14	
119	36.0 MPH	- 6	
120	35.0 MPH	- 4	
121	25.0 MPG	- 4	
122	SE.D MPH	X	
123	39.0 1004	- 0	
124	42.0 M/H	- 1	
125	BLO MPH	- 5	
126	41.0 MPH	- 4	
127	39.0 MPH.	4	
128	57.0 MPH	A	
129	35.0 5306		

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Vehicle	Water Street	Marian Company
Count	Speed Data	Direction
87	29.0 MPH	- 1
88	28.0 MFH	-
89	27.0 MPH	
90	24.0 MPH	- n
91	26.0 MPH	-0
92	2812 MPH	B.
93	27.0 MPH	n.
94	31.0 MPH	n
95	25.0 MPH	n.
96	25/0 MPH	- 6
97	26.0 MPH	B.
96	24.0 MFH	-0-
99	28/2 MPH	0
100	33.0 MPH	ft.
101	29.0 MPH	0
102	25,0 M/H	0
103	25/2 MPH	n.
104	25.0 MPH	- 0
105	24.0 MPH	0.
206	27.0 MPH	- 6-
107	27.0 MFH	-B1
105	29.0 MPH	п
109	27.0 MPH	-n-
110	25.0 MPH	189
111	28:0 MPH	- 6
112	29.0 MPH	-64
113	28.0 MPH	3
114	31.0 MPH	- 5.
115	30.0 MPH	- 1
114	30,0 MIN	-
117	30.0 MPH	
118	31.0 MPH	- 1
119	28.0 MPH	
120	24.0 M/H	
121	29.0 M/H	- 1
122	31.0 MPH	1.
123	BAID MPH	- 6
124	27.0 MPH	-
125	25 0 MPH	5.
126	26.0 MPH	1.
127	28.0 MPH	1.
128	26.0 MPH	0
129	26.0 MPH	- 1

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Venicle	Speed Data	Direction
Court	100000000000000000000000000000000000000	
150	25.0 MPH	5
181	26.0 MPH	
132	37.0 MPH	3
233	25.0 MP0.	3.
134	23,0 MPH	
10	29.0 MPH	- 8
136	25.0 MPH	
337	JED MPH	3
1.58	31.0 MPH	- 5
199	28.0 MPH	5.
140	28.0 MPH	. 3
141	25.0 MPH	3.
142	24.0 MPH	5
143	21.0 MPH	- 1
144	28.0 MPH	5
145	26.0 MPH	5
146	29,8 MPH	-
147	31.0 MPH	
148	.37.0 MFH	1
149	20,0 MHI	3:
150	33.0 MPH	
151	HHM 0.85	- 5
152	ZEO MPH	B
153	25.0 MPH	0
154	28.0 MPH	D-
155	27.0 MPH	- 0
156	28.0 MPH	n n
157	23.0 MWH	0
158	34.0 MPH	0
130	29.0 MPH	n
160	26.0 MPH	n.
161	28.0 MPH	n-
162	26.0 MPH	n.
163	30.0 MPH	8
164	TEO MPH	R.
165	35.0 MPH	n-
166	32.0 MPH	- 0
167	STO MPH	R.
368	26.0 MPH	n
169	30,0 M/W	- 2
270	30.0 MPH	3.
171	32.0 MPH	- 2
172	32.0 MFH	3.

A. Morton Thomas & Associates, Inc.

Radar Speed Study - Field Sheet

Vehicle	Speed Data	Direction
Count	Sept.	DE SCHOOL
130	46-0 MPH	- 6-
181	41.0 MPH	7
132	38.0 MPH	1.
133	35.0 55%	-
134	34.0 M/H	- 3-
135	38.0 M/W	
136	38.0 M/H	-
137	36.0 MPH	3.1
138	37.0 MPH	- 1-
139	35.0 MPH	
140	41.0 MPH	1
141	ALOMEN	-
142	\$2.0 MPH	1-
143	38.0 MPH	1
164	35.0 MPH	1
145	32.0 MWH	- 1
146	39.0 M/H	-0:
147	45.0 MPH	= fit:
148	42.0 MPH	0.
149	43.0 MPH	-in-
150	42.0 MPH	8
151	42.0 MPH	R:
152	39.0 M/hi	-0:
153	34,0 MPH	- 0
154	38.0 MPW	- Ro
155	39.0 MPH	-01
156	41.0 MINH	0.
157	42.0 M/H	-0.0
158	38,0 M/W	0.
159	38.0 MPH	- R
160	33.0 M/H	n.
161	35,0 MPH	n.
162	35.0 MPH	-A.
163	41.0 MH	
164	55.0 M9H	- 4
165	47.0 MPH	-
166	38.0 MPH	1-
167	36.0 MPH	- 1.
168	33.0 M/H	-
169	43.0 MPH	-
170	35,0 M/H	-1-
171	29.0 MPH	7.
172	35.0 MPH	1

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

SC 48 (Assembly Street)

MP 0.00 - 2.50

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

	Thomas & Associates, Inc. ed Study - Field Sheet
Roadway,	Assembly Street #2

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Vehicle Count	Speed Data	Direction
130	24.0 MPH	- 1
131	24.0 MPH	11.
192	28.0 M/H	-0.
133	25.0 MPH	0
134	28 t) MPH	D.
135	24.0 MPH	n.
136	26.0 M/H	0
137	19.0 MPH	n.
138	21.0 MPH	-0
139	25.0 MPH	0
140	26.0 M/H	R.
141	28.0 M/H	-0-
142	27.0 MPH	n
143	26.0 M/H	6.
144	33.0 M/H	- Br
145	32.0 MPH	
146	31.0 MPH	- 1
347	34.6 White	5
146	XXD MPH	-5
149	28.0 MPH	
150	27.0 MI/H	
151	36/5 VIIII	
152	26.0 MPH	1
153	29.0 M/H	2
154	SS.D MIPH	
155	62.0 MPH	3
156	34.0 MPH	1.
157	34.0 MPH	- 6
158	29.0 M/H	-
159	31.0 MPH	
160	28.0 M/H	
161	30.0 MPH	2.
162	30.0 MPH	5.
163	26.0 MPH	- Fa
164	27.0 MPH	- 6
165	SLC MPH	- 10-
: 166	21.0 MPH	-16
167	29.0 M9H	- 1
160	28.0 MPH	-6-
169	24.0 MPH	-0-
170	25.0 MPH	- 10
171	23.0 MPH	-6-
172	25.0 M/H	-6-

Vehicle	and a make	SECURITY.
Court	Speed Data	Direction
130	25.0 M/H	187
131	26.0 MBH	- 1
132	22.0 MPH	-
133	25.0 MPH	- 8
134	25.03.MPH	X
135	26.0 MPH	- 2
136	28.0 MPH	- 3
137	28.0 MPH	- 3
138	31.0 MPH	3
139	26/3 MVH	- 1
140	28.0 MPH	4.
141	25.0 MPH	- 8
. 142	24.0 MPH	Ä,
1A3	21.0 MPH	- 1
144	28.0 MPH	- 5
145	20.0 MPH	- A
146	29.0 MPH	- 3
147	3LG MPH	3
146	27.0 MPH	
149	20.0 MPH	- 4
190	31,0 MPH	
151	38 G MITH	- 1
157	28.0 MPH	
153	26 B MITH	
154	26.0 AWH	D-
155	27.0 M/FH	
156	DED MPH	- 11
157	23.0 M/H	
156	34/3 MI/H	0
159	26.0 MPH	n.
150	END MPH	
161	28.0 MPH	10-
167	26.0 MPH	n.
163	30.0 MPH	- 6
164	18.0 MPH	
165	35.0 M/H	D-
166	32.0 M2H	n
167	- 31.0 MPH	_ R
168	26.0 MPH	3-
168	30/0 M//H	- Ki
170	30.0 MPH	
171	32.0 M944	- 4

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

A. Morton	Thomas 8	Associates,	In
Radar Spec	ed Study -	Field Sheet	

Vehicle Seasonic Principle

Count	Speed Data	Direction
173	31.0 MPH	12
174	SLO MPH	3.
175	34.0 MPH	31
176	32.0 MPH	-
177	BLO MPH	1.
178	36.0 MPH	- 10
179	35 0 M/H	
180	37.0 MPH	31
181	33.0 MPH	- 1
182	41 0 MPH	- 1
193	ALD MINE	-
184	AZ D MPH	- 1
185	38.0 MPH	- 1
186	35.0 MPH	A.
187	32.0 MPH	3
188	39.0 MPH	3.
189	45.0 MPH	
190	42,0 MPR	
191	43.0 MPH	30
192	42.0 MPH	3
193	42.0 MPH	3.
194	39.0 MPH	30
135	34.0 M/H	- 0
196	38.0 MPH	n n
197	39.0 MPH	10
198	41.0 MPH	n
199	42.0 MPH	n
200	38 0 MPH	81.
201	SEO MPH	- 0
202	36.0 MPH	n-
203	37.0 MPH	0
204	35.0 MPH	n
205	41.0 MPH	- 01
206	ALD MAIN	- X
207	42,0 MPH	-
208	33.0 MPH	- 10
209	33.0 MPH	X.
210	32.0 MPH	31
211	39.0 MPH	- 6
212	45 0 MPH	
213	42.0 MPH	- 1
214	43.0 MPH	-
215	42.0 MPH	de

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Count	Speed Date	Direction
173	25.0 MPH	- 11
174	\$2.0 M994	n
175	34.0 MPH	- 61
176	31.0 MPH	n
177	29:D MPH	n
178	29.0 MPH	1
179	31.0 MPH	- 3:
180	31.0 MPH	- 5
181	33.0 MPH	- 1
182	31.0 MPH	- 1
183	32.0 MPH	-
184	28.0 MPH	-3
185	34.0 MPH	- 1
186	29.0 MPH	- X
187	35.0 MPH	y.
188	34.0 MPH	N
189	33.0 MPH	
190	31.6 MPH	
191	35.0 MPH	3
192	34.0 MPH	y-
193	36.0 MPH	Х.
194	35.0 MWH	- 3
195	25,0 M/H	- 0
196	31.0 MPH	- 11
197	32.0 MFH	- 11
198	32.0 MPH	n n
199	31.0 MPH	n
200	34.0 MPH	n
201	28.0 MPH	n
202	27.0 MPH	- 6
203	31.0 MPH	0
204	35.0 MPH	n
205	30.0 MPH	- 11
206	32.0 MPH	- 10
207	32.0 MPH	.0.
208	33:0 MPH	- 11
209	29,0 MPH	n
210	30:0 MPH	- 11
211	30.0 MPH	n
212	350 MPH	n
213	34.0 MPH	- 11
214	32.0 MPH	0
215	35.0 MPH	

Vehicle	Speed Data	Direction
173	32.0 MPH	- 5
174	28.0 M9H	
175	31.0 MPH	-
176	BLOMPH	A ^c
177	33.0 MPH	
178	SZ II MISH	1
179	94.0 M/H	-
180	32.0 MPH	-
181	28.0 M/H	
182	31.0 MPH	- 1
193	32.0 MWH	
184	31.0 MH	-
185	28.0 MFH	A
186	28.0 MFH	1
187	26.0 MPH	-
188	27.0 MPH	1
189	29.0 MPH	- 4
190	29.0 MPH	1
191	31.0 NVH	_
		-
192		4
193	33,0 MFH	1
194	25,0 M994	- 1
199	29-0 MIPH	
1%	27.0 MPH	A
197	20.0 MPH	A
198	25.0 MPH	A.
199	25.0 MPH	- 5
200	31.0 MPH	N N
201	20.0 MPH	n.
202	25.0 MVH	36-
208	27.0 MPH	10"
201	28.0 MPH	n.
205	25.0 MPH	n.
2006	26.0 M991	- 10
207	26.0 M/H	70-
208	27.0 MPH	- 10
209	25.0 MPH	n
210	31.0 MPH	-
211	31.0 MPH	- 11
232	26.0 MPH	
213	29.0 MFH	- 10
214	28.0 MPH	- 17
215	25.0 MPH	- 6

SC 48 (Assembly Street)

MP 0.00 - 2.50

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Boddwar, Assembly Street #1 Location, Hatween Gervan St and Pendleton St. SSS Coard: 33.9985, 41.0947 Direction. Monthlyound/Southbound #6/Lanes: 4 No., 158

Start Date/Time.

Wednesday 3/23/23 at 30:27

Vehicle Count	Speed Data	Direction
216	27,0 MIRI	- 0
217	29.0 MIRH	-0
218	ZEG MPH	. n
219	26.0 MPH	n
220	JID MPH	0
221	35.0 MPH	100
222	31.0 MPH	81
225	ZILO MPH	- 8
224	21.0 MPH	- 0
225	25.0 MPH	-0
226	76.0 MPH	n.
227	25.0 AMPH	-0.
228	24,0 MMH	- 0.
229	25 D MRH	-0
230	26.0 MPH	- 0
231	31.0 MPH	- p

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

toadeau, Assembly Street #2

Octation, Between Helward St and Draylins

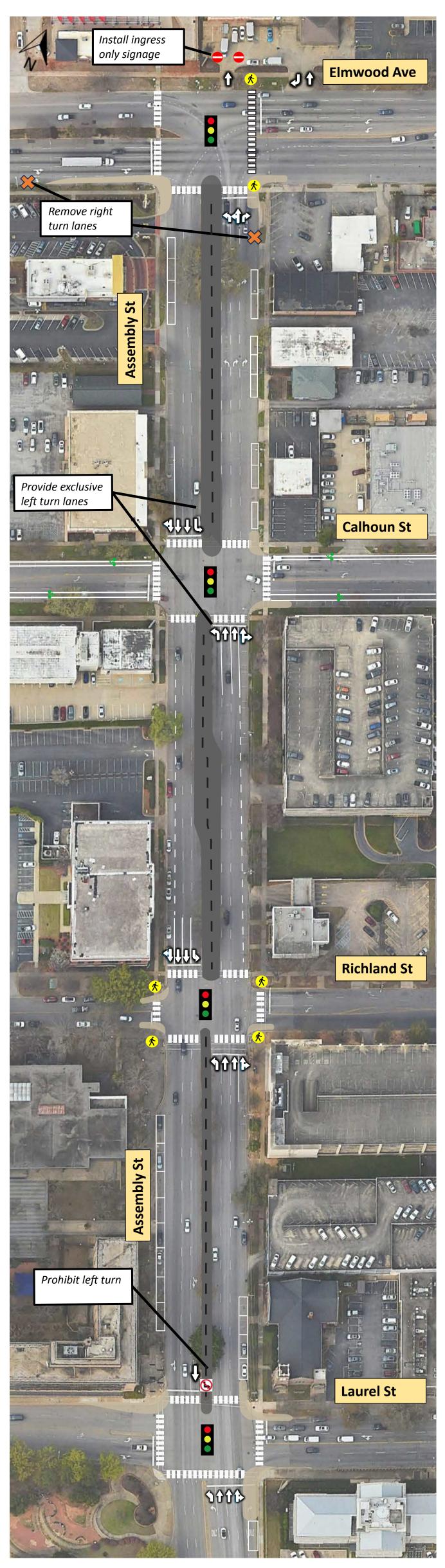
PS Coord, 38 98527, 41 02904

Northbound/Southbound

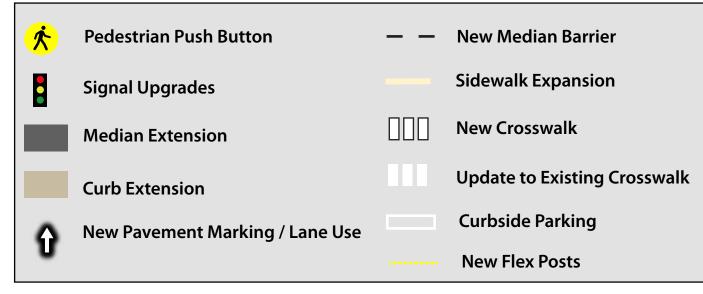
1 No. 13 6

Wednesday 3/29/23 at 10:50 Wednesday 1/29/23 at 11:05

Vehicle	Speed Data	Direction
216	(AZI) MINI	
217	39.0 MPH	- 1
218	34.0 MPH	- 1
219	38-0 MPH	- 1
220	39.0 MPH	- 9
221	41.0 MPH	- 8
222	42.0 MHH	- 10
223	SEC MPH	

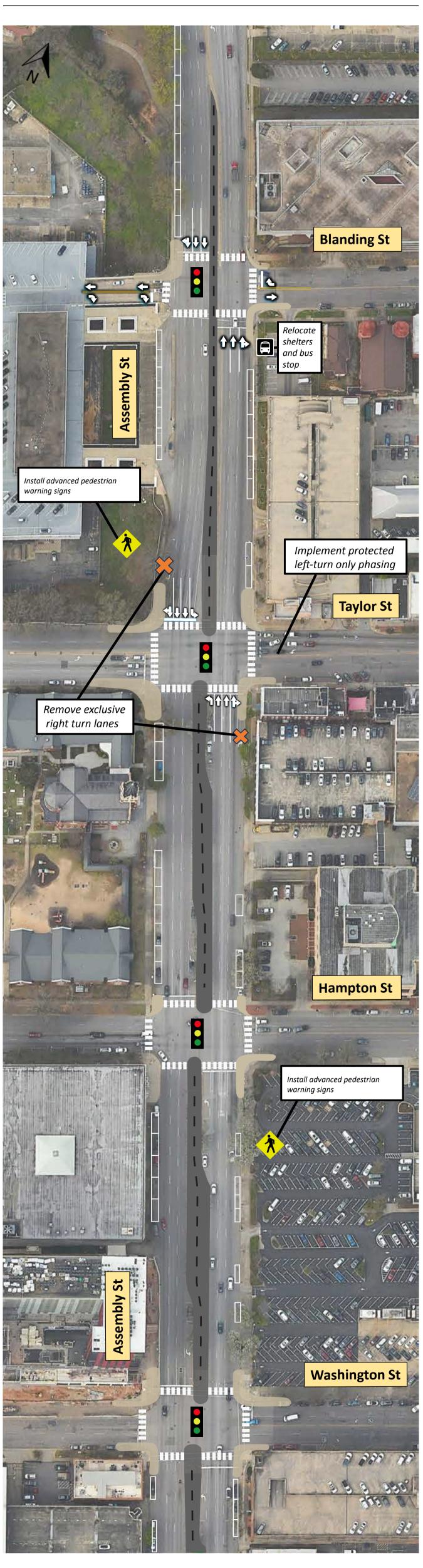

A. Morton Thomas & Associates, Inc. Radar Speed Study - Field Sheet

Foodway: Assembly Street #1 Location: Street is and Stand Stand Street #3 695 Copert #3 60820, #1 0882 Direction: 1 High, 1 St. 1 High 1 St. County, State: Michael, South Carolina

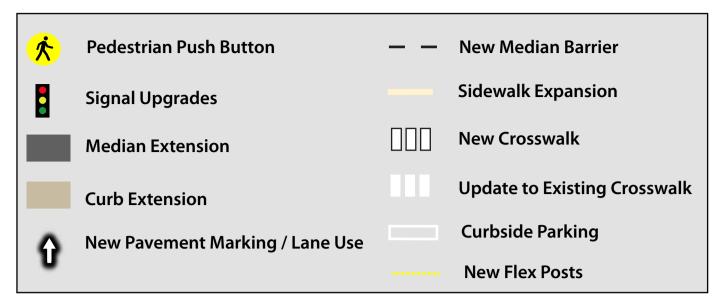

Start Date/Time: Wednesday 3/29/28 at 10:00 End Date/Time: Wednesday 3/29/28 at 10:15

Vehicle /	Speed Data	Direction
216	28.0 MMI	- N
217	27.0 MIN	. 0
218	27.0 MPH	- B
219	-28.0 MPH	- 11

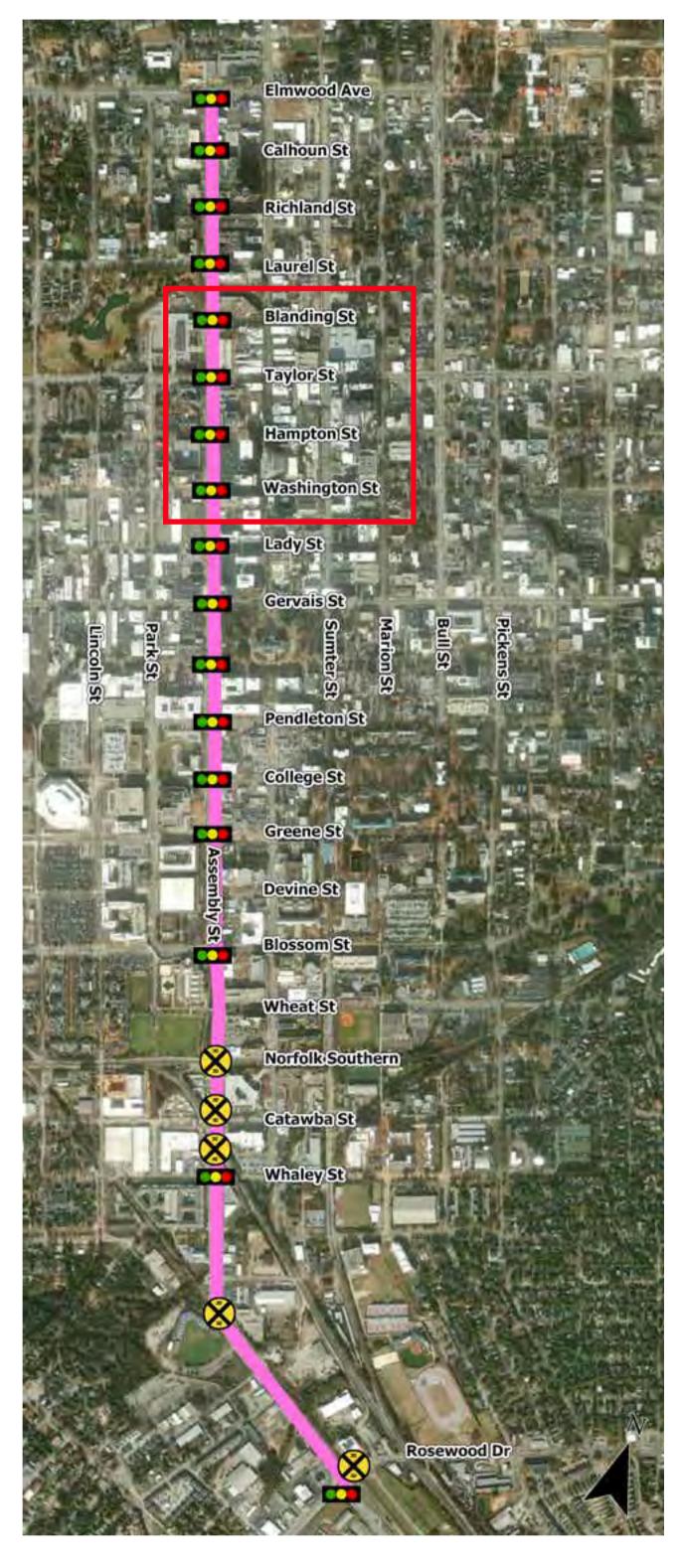
Appendix E – Concept Plan

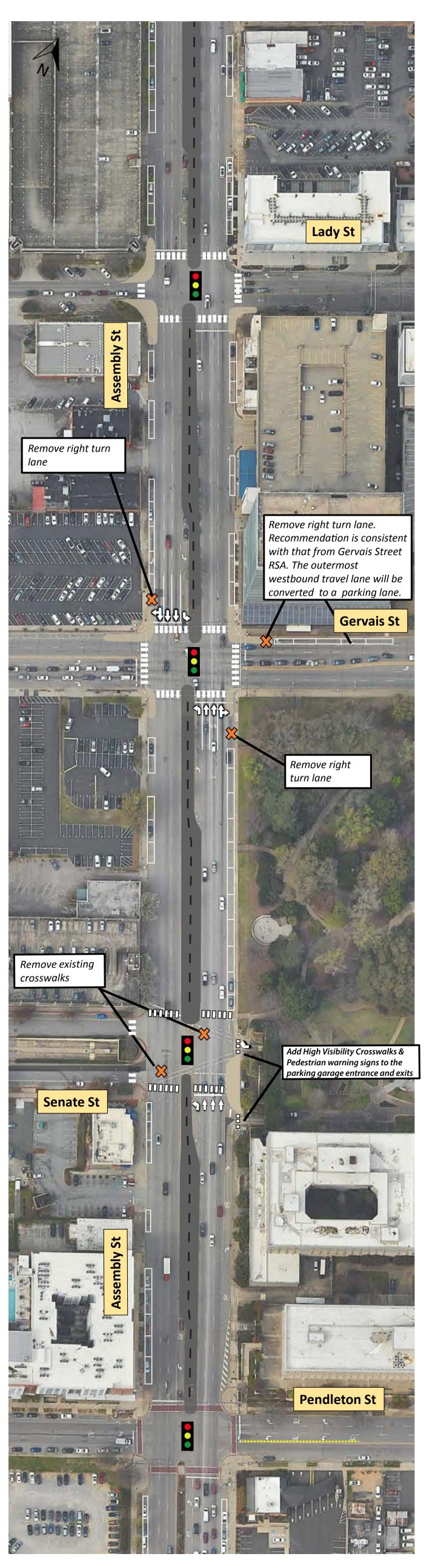


Assembly Street Improvements: Elmwood Avenue to Laurel Street

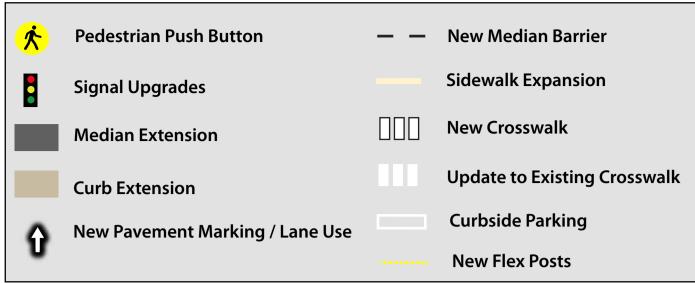


- Install 6 Pedestrian Push buttons
- Update 14 existing crosswalks
- Install one (1) new crosswalk
- Extend 12 curbs
- Extend three (3) medians
- Paint 26 new pavement markings
- Remove two (2) right- turn lanes
 - Add two (2) left-turn lanes
- Install four (4) new pedestrian signal heads
- Reduce pedestrian crossing distances by 215 feet

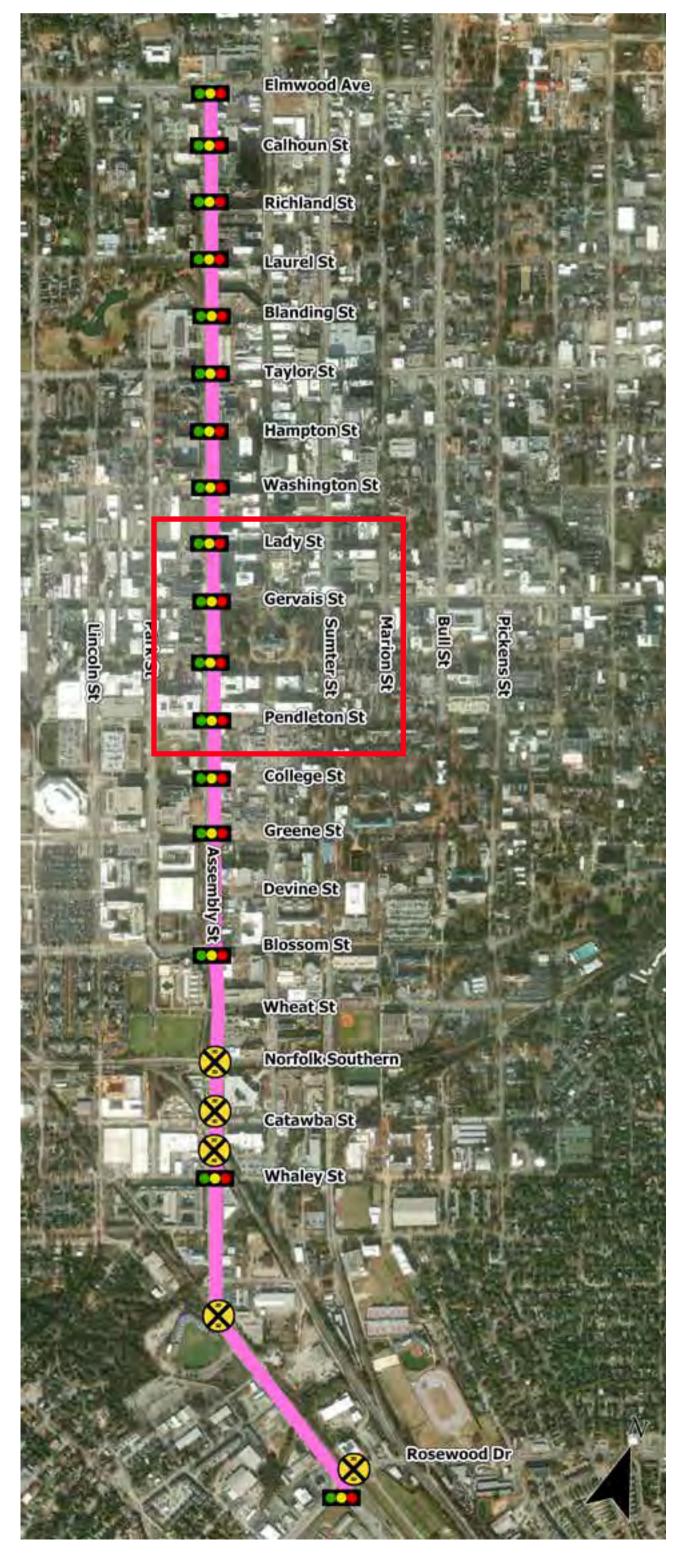




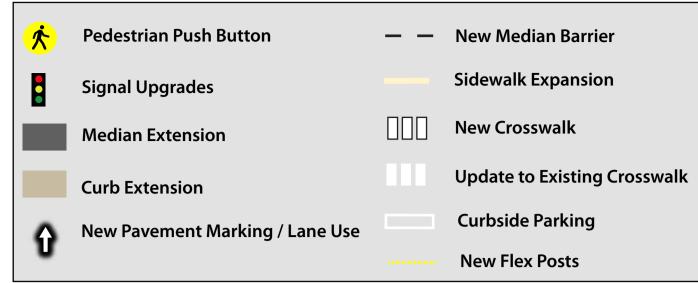
Assembly Street Improvements: Blanding Street to Washington Street



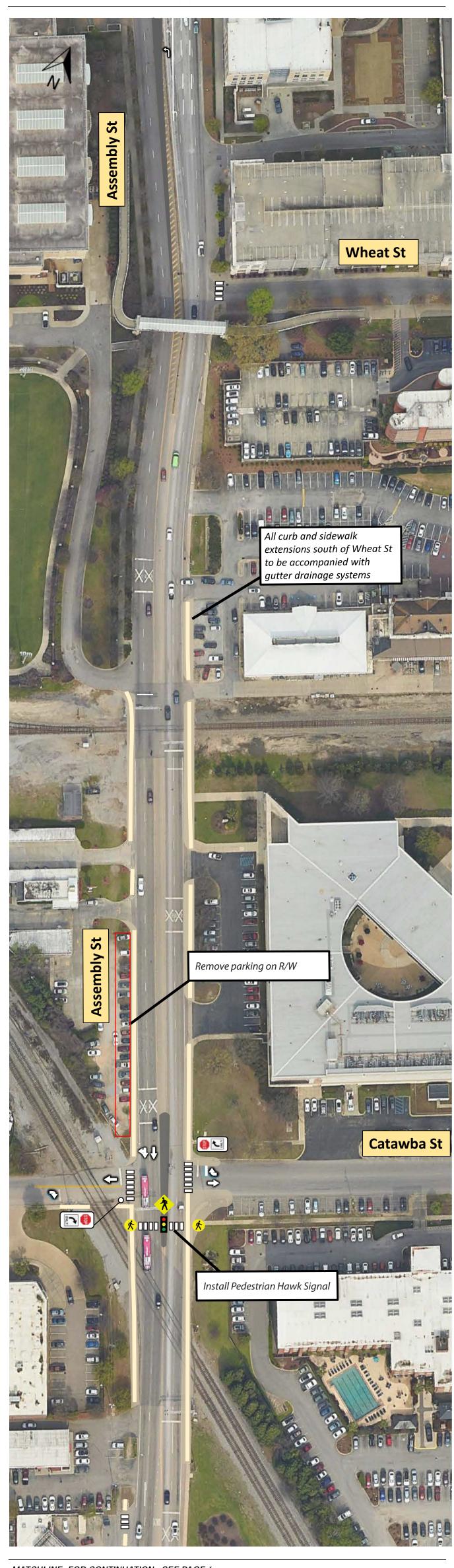
- Update 16 existing crosswalks
- Extend 13 curbs
- Extend four (4) medians
- Paint 14 new pavement markings
- Remove two (2) turn lanes
- Relocate one (1) bus stop and shelter
- Install advanced pedestrian warning signs
- Reduce pedestrian crossing distances by 330 feet



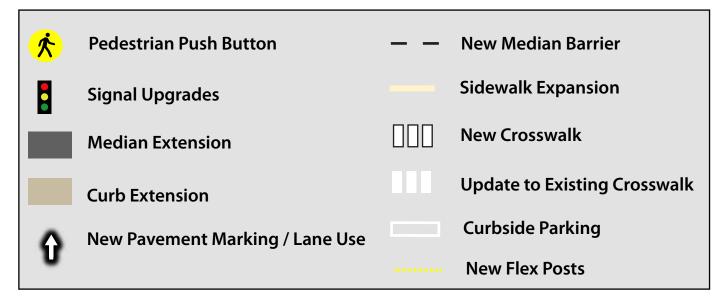

Assembly Street Improvements: Lady Street to Pendleton Street


- Update seven (8) existing crosswalks
- Install four (4) new crosswalks
- Extend eight (8) curbs
- Extend two (2) medians
- Paint three (3) new pavement markings
- Remove 2 existing crosswalks
- Remove 3 turn lanes
- Reduce pedestrian crossing distances by 245 feet
- Install flex posts

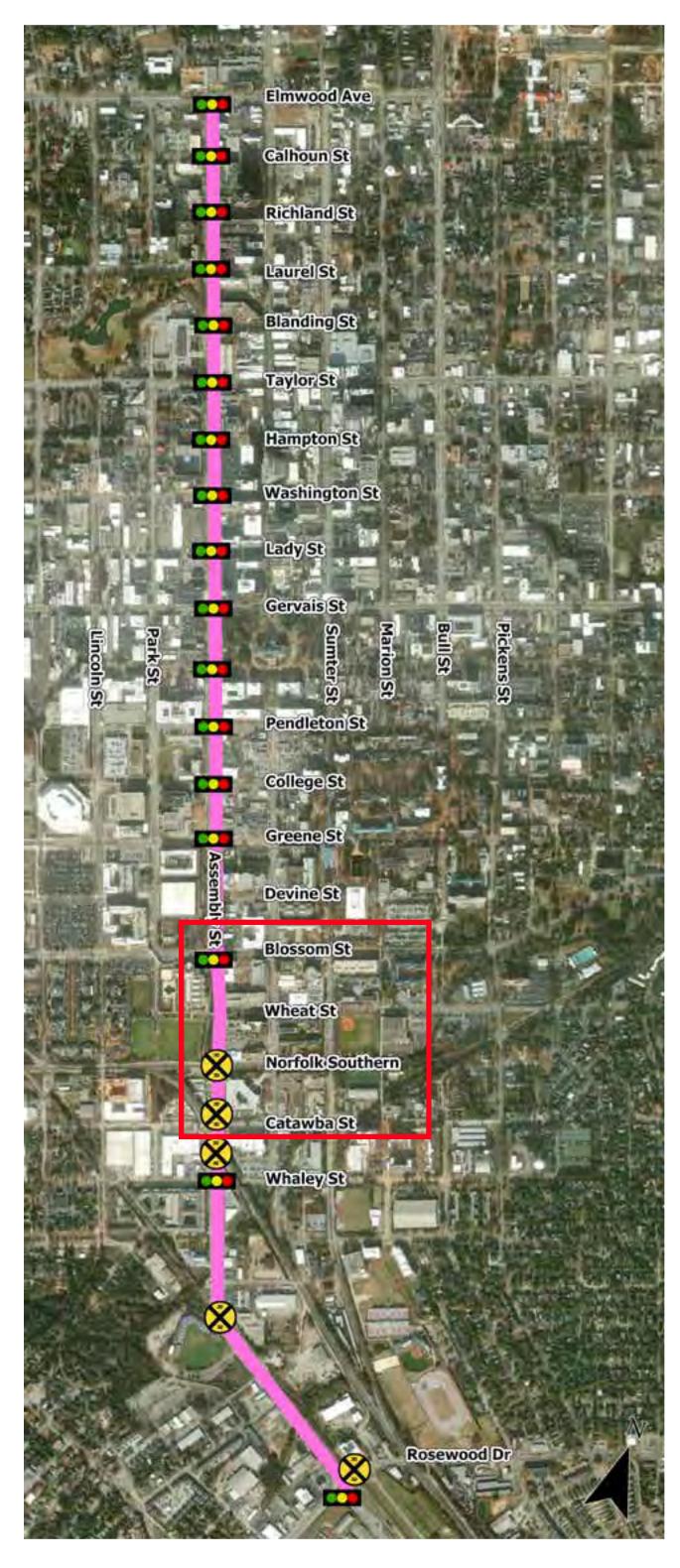
3



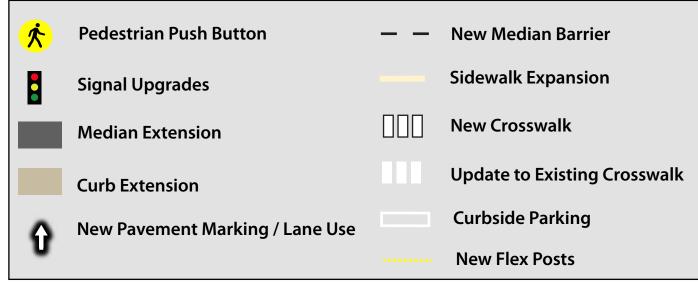
Assembly Street Improvements: College Street to Blossom Street



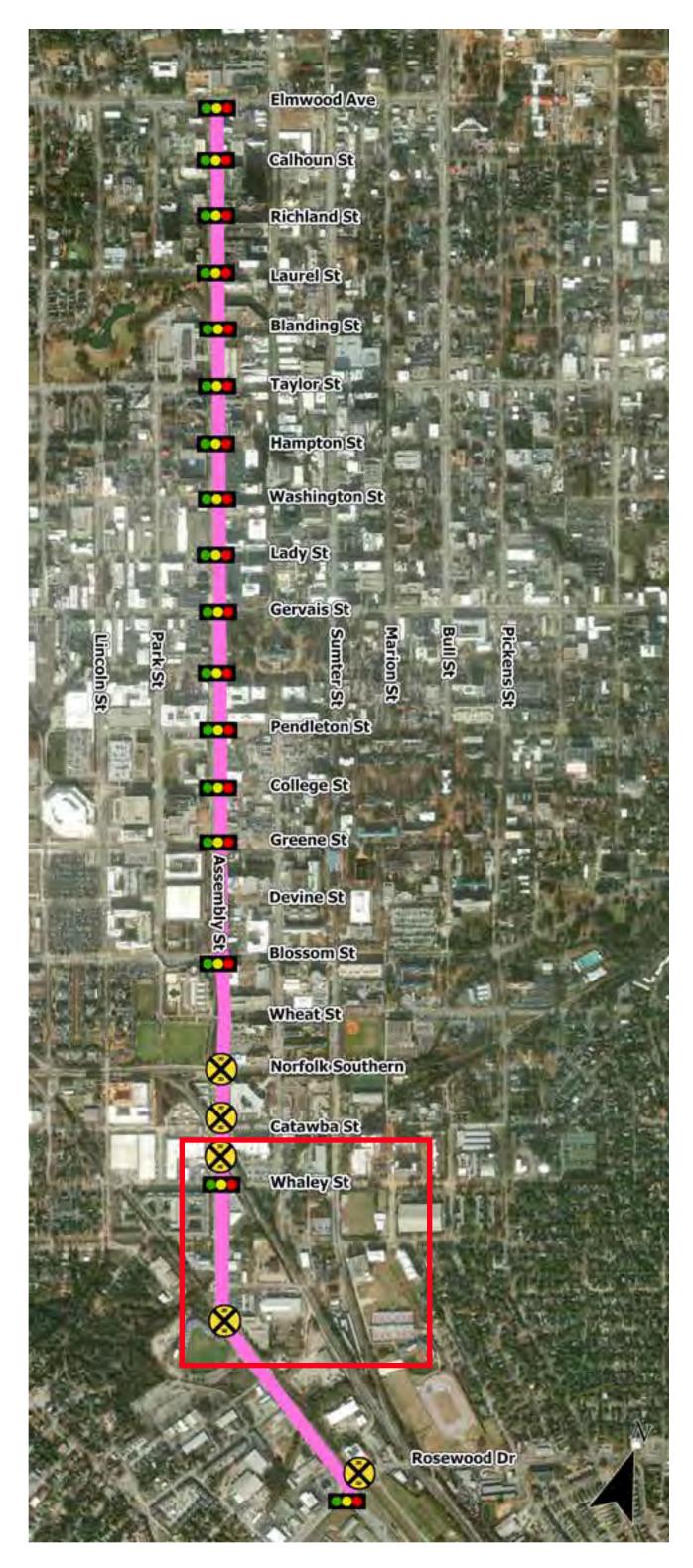
- Update three (3) existing crosswalks
- Paint four (4) new pavement markings
- Install two (2) bicycle cross walks
- Relocate three (3) bus stops
- Install Advanced Use lane signage
- Repair broken countdown timer
- Install flex posts



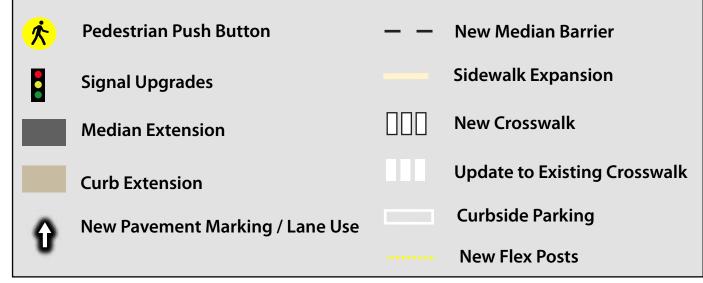
Assembly Street Improvements: Wheat Street to Catawba Street



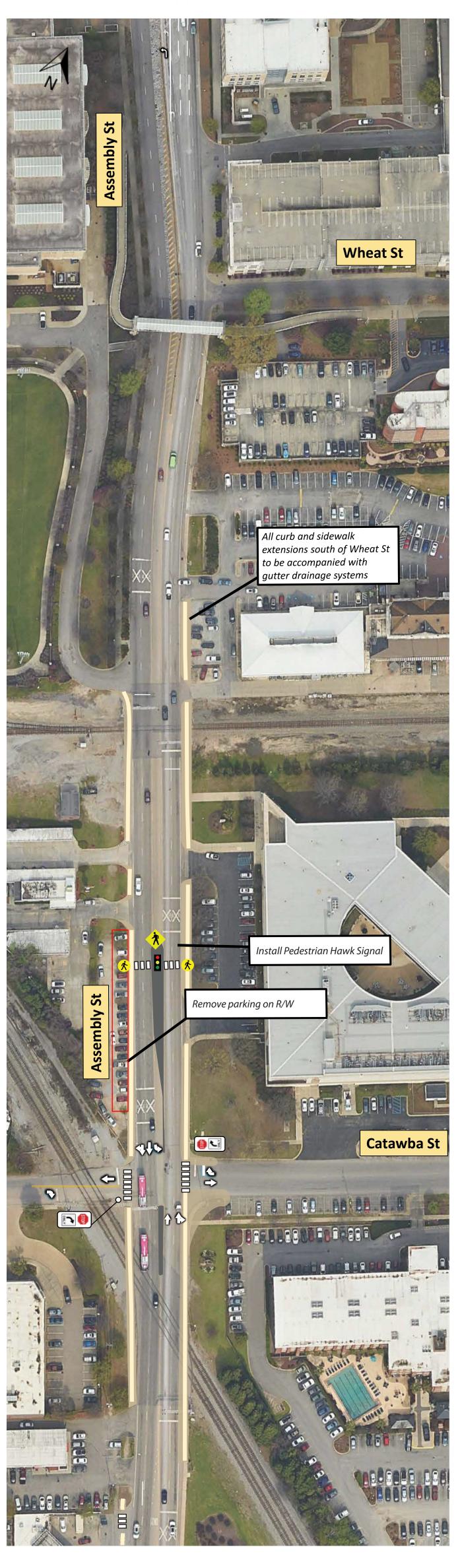
- Install two (2) Pedestrian Push buttons
- Install five (5) crosswalks
- Paint 10 new pavement markings
- Install one (1) median extensions
- Install 1,380 linear feat of sidewalk and curb
- Install gutter systems at all new sidewalk & curb locations
- Install a pedestrian HAWK s
- Install two (2) Stop / Right-turn only signs
- Reduce pedestrian crossing distances by 110 feet



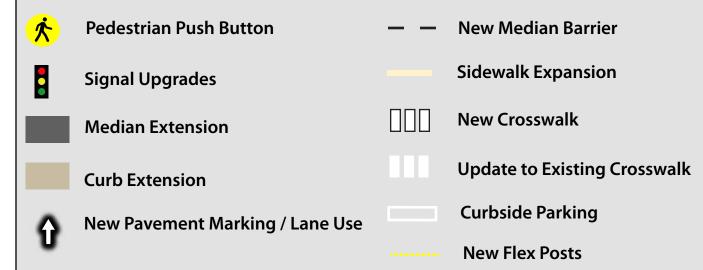
Assembly Street Improvements: Whaley Street to Dreyfuss Road

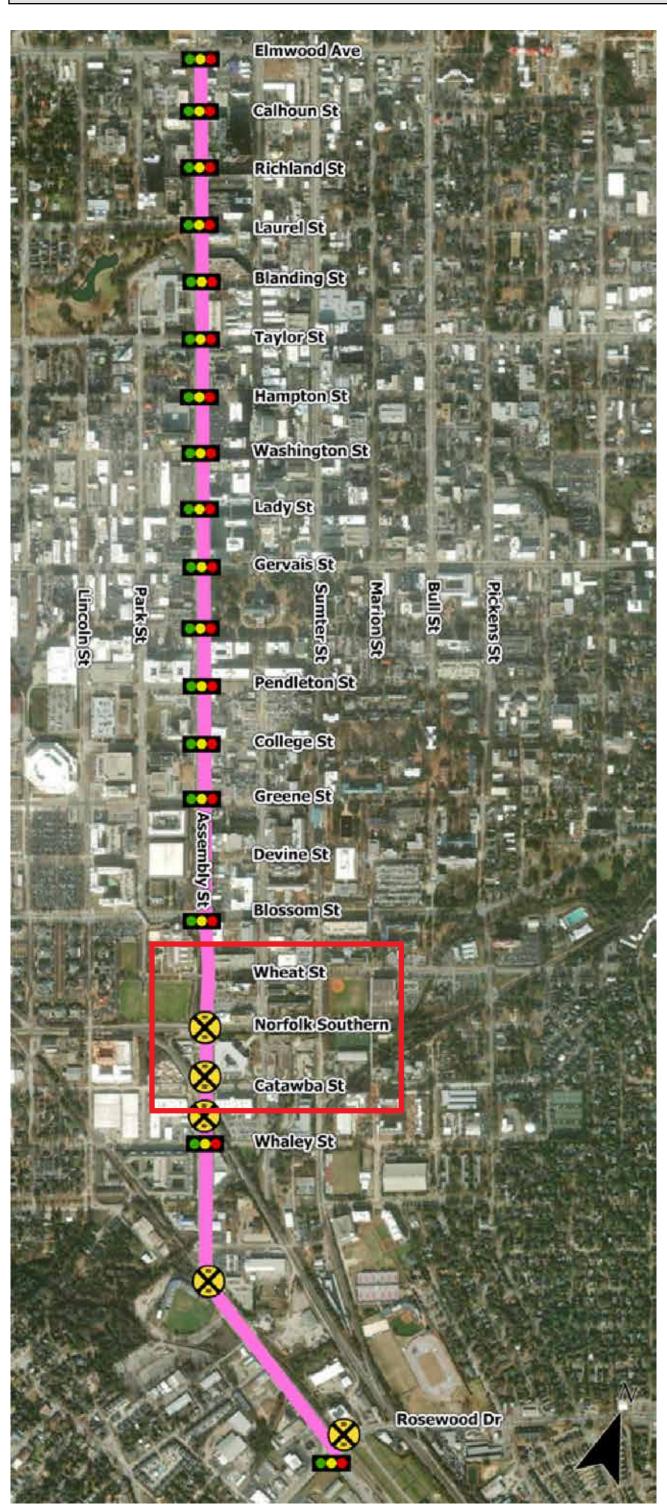


- Install four (4) Pedestrian Push buttons
- Update four (4) existing crosswalks
- Install two (2) new crosswalks
- Extend two (2) Curbs
- Install 825 linear feet of new sidewalk
- Reduce pedestrian crossing distances by 30 feet
- Install flex posts



Assembly Street Improvements: Assembly Street & Rosewood Drive


- Install 1,800 linear feet of new sidewalk
- Install four (4) new crosswalks
- Extend one (1) median
- Reduce pedestrian crossing distances by 80 feet
- Install flex posts



Assembly Street Improvements: Wheat Street to Catawba Street - Alternative 2

- Install two (2) Pedestrian Push buttons
- Install four (4) crosswalks
- Paint 10 new pavement markings
- Install one (1) median extensions
- Install 1,380 linear feat of sidewalk and curb
- Install gutter systems at all new sidewalk & curb locations
- Install one (1) pedestrian hawk signal
- Install two (2) Stop / Right-turn only signs
- Reduce pedestrian exposure by 110 feet

