Traffic Impact Study

Whetstone Housing

Gunnison County, Colorado

Prepared for:
Hord Coplan Macht
Kimley»Horn

```
T R A F F I C I M P A C T S T U D Y
```


Whetstone Housing

Gunnison County, Colorado

Prepared for
Hord Coplan Macht 1800 Wazee Street

Suite 450
Denver, Colorado 80202

Prepared by
Jeffrey R. Planck, P.E.
Kimley-Horn and Associates, Inc. 6200 South Syracuse Way

Suite 300
Greenwood Village, Colorado 80111
(303) 228-2300

November 2023

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES ii
LIST OF FIGURES ii
1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION. 3
3.0 EXISTING AND FUTURE CONDITIONS 5
3.1 Existing Study Area 5
3.2 Existing Roadway Network 5
3.3 Existing Traffic Volumes 8
3.4 Unspecified Development Traffic Growth 8
4.0 PROJECT TRAFFIC CHARACTERISTICS 12
4.1 Trip Generation 12
4.2 Trip Distribution 13
4.3 Traffic Assignment 13
4.4 Total (Background Plus Project) Traffic. 13
5.0 TRAFFIC OPERATIONS ANALYSIS 18
5.1 Analysis Methodology 18
5.2 Key Intersection Operational Analysis 19
5.3 CDOT Turn Bay Length Analysis 21
5.4 Improvement Summary 22
6.0 CONCLUSIONS AND RECOMMENDATIONS 24
APPENDICES
Appendix A - Intersection Count Sheets
Appendix B - Future Traffic Projections
Appendix C - Trip Generation Worksheets
Appendix D - Intersection Analysis WorksheetsAppendix E - Conceptual Site Plan

LIST OF TABLES

Table 1 - Whetstone Housing Traffic Generation 13
Table 2 - Level of Service Definitions 18
Table 3 - CR-738 \& SH-135 (\#1) LOS Results 19
Table 4 - Project Access Level of Service Results 20
LIST OF FIGURES
Figure 1 - Vicinity Map. 4
Figure 2 - Existing Geometry and Control 7
Figure 3 - 2023 Existing Traffic Volumes 9
Figure 4-2025 Background Traffic Volumes 10
Figure 5-2045 Background Traffic Volumes 11
Figure 6 - Project Trip Distribution 14
Figure 7 - Project Traffic Assignment 15
Figure 8 - 2025 Total Traffic Volumes 16
Figure 9-2045 Total Traffic Volumes 17
Figure 10 - Recommended Geometry and Control 23

This report has been prepared to document the results of a Traffic Impact Study for Whetstone Housing proposed to be located on the southeast corner of the County Road 738 (CR-738) and State Highway 135 (SH-135) intersection in Gunnison County, Colorado. Whetstone Housing is proposed to include 46 units of single family attached housing and 210 units of affordable housing. Of note, all residential units on this site will be affordable housing. However, ITE does not provide equations for single family affordable housing. Therefore, to provide a conservative analysis, trip generation for single family dwelling units was based on market rate single family attached housing ITE equations. It is expected that Whetstone Housing will be completed in the next several years; therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The intersection of CR-738 and SH135 was incorporated into this traffic study in accordance with the Gunnison County and State of Colorado Department of Transportation (CDOT) standards and requirements.

The CR-738 and SH-135 intersection is currently planned to be realigned approximately 125 feet to the southeast along $\mathrm{SH}-135$ and be constructed as a single lane roundabout. This improvement to CR-738 and SH-135 is expected to occur coinciding with completion of the project or soon after. A public street will be constructed as the southwest leg of this roundabout that will provide access to the project. In addition, the proposed right-in/right-out south access along the west side of SH -135 was evaluated.

Regional and primary access to Whetstone Housing will be provided by $\mathrm{SH}-135$. Direct access will be provided by one proposed full movement access and one proposed right-in/right-out access along the west side of SH-135.

The Whetstone Housing development is expected to generate approximately 1,182 weekday daily trips, with 85 of these trips occurring during the morning peak hour and 109 of these trips occurring during the afternoon peak hour.

Based on the analysis presented in this report, Kimley-Horn believes Whetstone Housing will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following conclusions and recommendations:

- It is anticipated that the CR-738 and $\mathrm{SH}-135$ intersection will be realigned to the south in the near future and that the west leg of this intersection will provide access to the project from a public street. This intersection is planned as a single lane roundabout coinciding with this realignment and should be completed prior to or coinciding with completion of the project. If the roundabout is slightly delayed, the project access may temporarily operate with stop control for a short period of time. As such, this intersection was also conservatively evaluated as a four legged (instead of two offsetting T-intersections) stop controlled intersection for informational purposes only. With stop-control, the eastbound approach at this intersection is anticipated to operate with long vehicle delays during the morning peak hour with project traffic. With roundabout control, this intersection is anticipated to operate acceptably with LOS B or better throughout the 2045 horizon.
- With completion of the Whetstone Housing project, a right-in/right-out access is proposed along the west side of $\mathrm{SH}-135$ to serve the proposed residential development. It is recommended that a R1-1 "STOP" sign be installed with a R3-2 No Left Turn Sign posted underneath on the exiting eastbound approach of this access.
- The threshold for requiring an access permit along Colorado Department of Transportation (CDOT) roadways occurs when project traffic is anticipated to increase the existing access traffic volumes by more than 20 percent. Based on traffic projections, the addition of project traffic on the west leg of the SH-135 and CR-738 is anticipated to increase existing traffic by more than 20 percent. Therefore, an access permit is anticipated to be needed at this intersection as development occurs. Additionally, an access permit is anticipated to be needed at the proposed $\mathrm{SH}-135$ Right-in/Right-out South Access as this is a new access along a CDOT highway.
- Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of Gunnison County, CDOT, and the Manual on Uniform Traffic Control Devices (MUTCD) - 2009 Edition.

2.0 INTRODUCTION

Kimley-Horn has prepared this report to document the results of a Traffic Impact Study for Whetstone Housing proposed to be located on the southeast corner of the County Road 738 (CR738) and State Highway 135 (SH-135) intersection in Gunnison County, Colorado. A vicinity map illustrating the Whetstone Housing development location is shown in Figure 1. Whetstone Housing is proposed to include 46 units of single family attached housing and 210 units of affordable housing. Of note, all residential units on this site will be affordable housing. However, ITE does not provide equations for single family affordable housing. Therefore, to provide a conservative analysis, trip generation for single family dwelling units was based on market rate single family attached housing ITE equations. A conceptual site plan is attached in Appendix \mathbf{E}. It is expected that Whetstone Housing will be completed in the next several years; therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The intersection of CR-738 and SH135 was incorporated into this traffic study in accordance with the Gunnison County and State of Colorado Department of Transportation (CDOT) standards and requirements.

The CR-738 and SH-135 intersection is currently planned to be realigned approximately 125 feet to the southeast along $\mathrm{SH}-135$ and be constructed as a single lane roundabout. This improvement to CR-738 and SH-135 is expected to occur coinciding with completion of the project or soon after. A public street will be constructed as the southwest leg of this roundabout that will provide access to the project. In addition, the proposed right-in/right-out south access along the west side of SH -135 was evaluated.

Regional and primary access to Whetstone Housing will be provided by SH-135. Direct access will be provided by one proposed full movement access and one proposed right-in/right-out access along the west side of $\mathrm{SH}-135$.

FIGURE 1
WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
VICINITY MAP
Kimley»Horn

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is comprised of two single family homes. To the north are single family homes and a golf course. South of the project site are industrial land uses. To the east of the project site is vacant land and single-family homes. West of the project site is mainly vacant land and mountainous terrain.

3.2 Existing Roadway Network

SH-135 extends mainly north/south with one through lane in each direction while having a posted speed limit near the site of 55 miles per hour. The Colorado Department of Transportation classifies SH-135 as R-A: Regional Highway.

CR-738 extends mainly in the east/west direction as a two-lane roadway. It has a posted speed limit of 25 miles per hour.

The unsignalized intersection of CR-738 and SH-135 operates with stop-control on the westbound CR-738 approach and assumed stop-control on the eastbound CR-738 approach as a stop sign is not currently installed on this approach. The northbound approach of this intersection consists of a shared left turn/through lane and a right turn lane while the southbound approach provides a left turn lane and a shared through/right turn lane. The eastbound and westbound approaches provide one shared lane for all movement. An aerial photo of the existing intersection configuration is below (north is up).

CR-738 \& SH-135 (\#1)

The intersection lane configuration and control for the study area key intersection are shown in Figure 2.

096684007

FIGURE 2

LEGEND
Study Area Key Intersection

WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
EXISTING GEOMETRY AND CONTROL

Stop Controlled Approach

麇䍗 Roadway Speed Limit
100' Turn Lane Length (feet)
Kimley"Horn

3.3 Existing Traffic Volumes

Existing turning movement counts were conducted at the study intersection on Wednesday, September 13, 2023 during the weekday morning and afternoon peak hours. The counts were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date. The existing intersection traffic volumes are shown in Figure 3 with count sheets provided in Appendix A.

3.4 Unspecified Development Traffic Growth

According to information provided on the website for the Colorado Department of Transportation (CDOT), the 20-year traffic growth factor along SH -135 is 1.21 in the vicinity of the site. The 20year growth factor equates to an annual traffic growth rate of 1.0 percent. Traffic information from the CDOT Online Transportation Information System (OTIS) website is included in Appendix B. This annual growth rate was used to estimate near-term 2025 and long-term 2045 traffic volume projections at the key intersection. Background traffic volumes for 2025 and 2045 are shown in Figures 4 and 5, respectively.

LEGEND
(X) Study Area Key Intersection

FIGURE 3
WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
2023 EXISTING TRAFFIC VOLUMES
$X X X(X X X)$
Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume

Kimley»)Horn

FIGURE 4
WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
2025 BACKGROUND TRAFFIC VOLUMES

LEGEND

(X) Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
$X X, X 00$ Estimated Daily Traffic Volume
Kimley"Horn

FIGURE 5

WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
2045 BACKGROUND TRAFFIC VOLUMES

LEGEND

(X) Study Area Key Intersection

XXX XXX) Weekday AM(PM)
Peak Hour Traffic Volumes

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual ${ }^{1}$ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report fitted curve equations that apply to Single Family Attached Housing (ITE Land Use Code 215) and Affordable Housing (ITE Land Use Code 223) for traffic associated with the development. Of note, all residential units on this site will be affordable housing. However, ITE does not provide equations for single family affordable housing. Therefore, to provide a conservative analysis, trip generation for single family dwelling units was based on market rate single family attached housing ITE equations.

With the Whetstone Housing development being constructed adjacent to an existing Gunnison Valley RTA bus stop, located on the north side of the project site along SH-135, a 10 percent TOD reduction of trips has been applied to the residential uses to account for the development's residents utilizing the free bus.

Taking into account TOD reductions, the Whetstone Housing development is expected to generate approximately 1,182 weekday daily trips, with 85 of these trips occurring during the morning peak hour and 109 of these trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE Trip Generation Manual, $11^{\text {th }}$ Edition - Volume 1: User's Guide and Handbook, 2022. Table 1 summarizes the estimated trip generation for the project. The trip generation worksheets are included in Appendix C.

[^0]Table 1 - Whetstone Housing Traffic Generation

Land Use and Size	Weekday Vehicle Trips						
	Daily	AM Peak Hour			PM Peak Hour		
		In	Out	Total	In	Out	Total
Single Family Attached Housing (ITE 215) 46 Dwelling Units	302	6	12	18	14	10	24
Affordable Housing (ITE 223) 210 Dwelling Units	1,012	22	54	76	57	40	97
Total Site Generated Trips	1,314	28	66	94	71	50	121
Total Project Trips after 10\% TOD Reduction	1,182	25	60	85	64	45	109

4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding employment, school, and attraction information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution for the proposed development is illustrated in Figure 6.

4.3 Traffic Assignment

Whetstone Housing traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in Table 1. Traffic assignment is shown in
Figure 7.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short-term 2025 buildout horizon and long-term 2045 twenty-year planning horizon. These total traffic volumes for the study area are illustrated for the 2025 and 2045 horizon years in Figures 8 and 9, respectively.

FIGURE 6

WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
PROJECT TRIP DISTRIBUTION

LEGEND

Study Area Key Intersection
Project Access Intersection
$\xrightarrow{X X \%}$
External Trip Distribution Percentage
$X X \%[\mathrm{XX} \mathrm{\%}]$ Entering[Exiting]
Trip Distribution Percentage
Kimley»Horn

FIGURE 7

WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
PROJECT TRAFFIC ASSIGNMENT

Study Area Key Intersection

Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
Kimley"Horn

FIGURE 8

WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
2025 TOTAL TRAFFIC VOLUMES

Study Area Key Intersection

Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
Kimley"Horn

FIGURE 9

WHETSTONE HOUSING
GUNNISON COUNTY, COLORADO
2045 TOTAL TRAFFIC VOLUMES
Study Area Key Intersection

Project Access Intersection
XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
Kimley»)Horn

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2025 and 2045 development horizons at the identified key intersection. The acknowledged source for determining overall capacity is the Highway Capacity Manual (HCM) ${ }^{2}$.

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). For intersections and roadways in this study area, standard traffic engineering practice recommends overall intersection LOS D and movement/approach LOS E as the minimum desirable thresholds for acceptable operations. Table 2 shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for roundabout intersections are defined for each approach and for the overall intersection.

[^1]
5.2 Key Intersection Operational Analysis

Calculations for the operational level of service at the key intersection for the study area are provided in Appendix D. The existing year analysis is based on the lane geometry and intersection control shown in Figure 2. Existing peak hour factors were utilized in the existing, 2025, and 2045 horizon analysis years. Synchro traffic analysis software was used to analyze the unsignalized key intersections for HCM level of service.

CR-738 \& SH-135 (\#1)

The unsignalized intersection of CR-738 and SH-135 operates with stop-control on the westbound CR-738 approach and assumed stop-control on the eastbound CR-738 approach as a stop sign is not currently installed on this approach. The intersection movements operate acceptably at LOS C or better during both peak hours under existing conditions. It is anticipated that CR-738 will be realigned to the south in the near future and that the west leg of this intersection will provide access to the project from a public street. This intersection is planned as a single lane roundabout coinciding with this realignment and should be completed prior to or coinciding with completion of the project. If the roundabout is slightly delayed, the project access may temporarily operate with stop control for a short period of time. As such, this intersection was also conservatively evaluated as a four legged (instead of two offsetting T-intersections) stop controlled intersection for informational purposes only. With stop-control, the eastbound approach at this intersection is anticipated to operate at LOS F during the morning peak hour with project traffic. With roundabout control, this intersection is anticipated to operate acceptably with LOS B or better throughout the 2045 horizon. This analysis shows the need for roundabout prior to or soon after project construction. Table 3 provides the results of the LOS analysis conducted at this intersection.

Table 3 - CR-738 \& SH-135 (\#1) LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
	0.0			
Northbound Left	0.0	A	0.0	A
Eastbound Approach	23.6	C	21.7	C
Westbound Approach	9.6	A	20.5	C
Southbound Left				A
2025 Background	0.0	A	0.0	
Northbound Left	0.0	A	22.2	A
Eastbound Approach	24.6	C	21.2	C
Westbound Approach	9.6	A	8.0	A
Southbound Left				

	AM Peak Hour		PM Peak Hour	
	Delay Scenario	Los	Delay (sec/veh)	LOS
2025 Background \#	8.0	A	8.6	A
Northbound Left	91.0	F	26.6	D
Eastbound Approach	29.6	D	26.4	D
Westbound Approach	9.6	A	8.0	A
Southbound Left	9.1	A	7.0	A
2025 Background Plus Project \#\#				
2045 Background	0.0	A	0.0	A
Northbound Left	0.0	A	30.0	D
Eastbound Approach	59.6	F	38.1	E
Westbound Approach	10.6	B	8.2	A
Southbound Left	2045 Background Plus Project \#\#	13.1	B	8.6
A				

\# = Realigned with eastbound and westbound stop-control and single lane approaches \#\# = Roundabout control with yield control and single lane on all four approaches

Project Accesses

With completion of the Whetstone Housing project, an additional right-in/right-out access is proposed along the west side of $\mathrm{SH}-135$ to serve the residential neighborhood development. It is recommended that a R1-1 "STOP" sign be installed with a R3-2 No Left Turn Sign posted underneath on the exiting eastbound approach of this access. Table 4 provides the results of the level of service for this project access.

Table 4 - Project Access Level of Service Results

Intersection	2025 Total				2045 Total			
	AM Peak Hour		PM Peak Hour		AM Peak Hour	PM Peak Hour		
	Delay (sec/ veh)	LOS						
SH-135 S. Access (\#2) Eastbound Right	10.2	B	12.4	B	10.7	B	13.8	B

As shown in the table above, the project access intersection along SH-135 is anticipated to have all movements operating with acceptable LOS B during the peak hours in both the buildout year 2025 and the 2045 long-term horizons.

5.3 CDOT Turn Bay Length Analysis

The threshold for requiring an access permit along Colorado Department of Transportation (CDOT) roadways occurs when project traffic is anticipated to increase the existing access traffic volumes by more than 20 percent. Based on traffic projections, the addition of project traffic on the west leg of the $\mathrm{SH}-135$ and CR-738 (\#1) is anticipated to increase existing traffic by more than 20 percent. Therefore, an access permit is anticipated to be needed at this intersection as development occurs. Additionally, an access permit is anticipated to be needed at the proposed SH-135 South Access (\#2) as this is a new access.

Auxiliary turn lanes along CDOT controlled highways are to be implemented based on volume threshold requirements set forth in the State Highway Access Code. Further, turn lane lengths should be designed based on the State Highway Access Code. SH-135 is categorized as Regional Highway (R-A) and has a posted speed limit of 55 miles per hour adjacent to the site. According to the State Highway Access Code for category Regional Highway (R-A) roadways, the turn lane warrants are as follows:

- A left turn deceleration lane with taper and storage length is required for any access with a projected peak hour left ingress turning volume greater than 10 vehicles per hour (vph). The taper length will be included within the required deceleration length.
- A right turn deceleration lane and taper length is required for any access with a projected peak hour right ingress turning volume greater than 25 vph . The taper length will be included within the required deceleration length.
- A right turn acceleration lane and taper length is required for any access with a projected peak hour right turning volume greater than 50 vph when the posted speed on the highway is greater than 40 mph . The taper length will be included within the required acceleration length.

Based on the 2025 traffic volume projections, turn lane requirements at the project access intersections along $\mathrm{SH}-135$ are as follows:

CR-738 \& SH-135 (\#1):

- A northbound left turn lane is warranted based on projected 2025 background plus project traffic volumes being 22 northbound left turns during the peak hour and the threshold being 10 vph . Based on the 55 mile per hour speed limit, the deceleration length is 380 feet, plus
a 220 -foot taper. The storage requirement is 25 feet based on the projected left turning volume. Therefore, to meet CDOT standards the left turn lane should be constructed to 405 feet plus a 220-foot taper. However, this intersection is anticipated to be reconstructed as a roundabout coinciding with or shortly after project construction. Therefore, no interim improvements are recommended at this intersection.
- A southbound right turn lane is not warranted based on projected 2025 background plus project traffic volumes being 23 southbound right turns during the peak hour and the threshold being 25 vph .
- A southbound acceleration lane along SH-135 from the CR-738 eastbound right turn is not warranted based on projected 2025 background plus project traffic volumes being nine (9) eastbound right turns during the peak hour and the threshold being 50 vph .

SH-135 Right-in/Right-out South Access (\#2):

- A southbound right turn lane is not warranted based on projected 2025 background plus project traffic volumes being 19 southbound right turns during the peak hour and the threshold being greater than 25 vehicles per hour.
- A southbound acceleration lane along SH-135 from the South Access eastbound right turn is not warranted based on projected 2025 background plus project traffic volumes being 12 eastbound right turns during the peak hour and the threshold being 50 vph .

5.4 Improvement Summary

Based on the results of the intersection operational analysis and turn lane evaluation, the key intersection recommended improvements and control are shown in Figure 10.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes Whetstone Housing will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following conclusions and recommendations:

- It is anticipated that the CR-738 and SH-135 intersection will be realigned to the south in the near future and that the west leg of this intersection will provide access to the project from a public street. This intersection is planned as a single lane roundabout coinciding with this realignment and should be completed prior to or coinciding with completion of the project. If the roundabout is slightly delayed, the project access may temporarily operate with stop control for a short period of time. As such, this intersection was also conservatively evaluated as a four legged (instead of two offsetting T-intersections) stop controlled intersection for informational purposes only. With stop-control, the eastbound approach at this intersection is anticipated to operate with long vehicle delays during the morning peak hour with project traffic. With roundabout control, this intersection is anticipated to operate acceptably with LOS B or better throughout the 2045 horizon.
- With completion of the Whetstone Housing project, a right-in/right-out access is proposed along the west side of $\mathrm{SH}-135$ to serve the proposed residential development. It is recommended that a R1-1 "STOP" sign be installed with a R3-2 No Left Turn Sign posted underneath on the exiting eastbound approach of this access.
- The threshold for requiring an access permit along Colorado Department of Transportation (CDOT) roadways occurs when project traffic is anticipated to increase the existing access traffic volumes by more than 20 percent. Based on traffic projections, the addition of project traffic on the west leg of the SH-135 and CR-738 is anticipated to increase existing traffic by more than 20 percent. Therefore, an access permit is anticipated to be needed at this intersection as development occurs. Additionally, an access permit is anticipated to be needed at the proposed SH-135 Right-in/Right-out South Access as this is a new access along a CDOT highway.
- Any onsite or offsite improvements should be incorporated into the Civil Drawings and conform to standards of Gunnison County, CDOT, and the Manual on Uniform Traffic Control Devices (MUTCD) - 2009 Edition.

APPENDICES

APPENDIX A

Intersection Count Sheets

Ridgeview Data

Gunnison County, CO Whetstone Housing
AM Peak
SH 135 and CR 738

Groups Printed- Automobiles - Bicycle and Pedestrian

	$\begin{gathered} \text { CR } 738 \\ \text { Eastbound } \end{gathered}$					CR 738 Westbound					SH 135 Northbound					SH 135 Southbound					
Start Time	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toal	Left	Thru	Right	Peds	App. Toaa	Left	Thru	Right	Peds	App. Toaa	Int. Total
07:00 AM	0	0	0	0	0	3	0	5	0	8	0	51	2	0	53	10	18	0	0	28	89
07:15 AM	0	0	0	0	0	7	0	8	0	15	0	61	13	0	74	8	36	0	0	44	133
07:30 AM	0	0	0	0	0	12	0	18	0	30	0	70	7	0	77	4	41	0	0	45	152
07:45 AM	0	0	0	0	0	4	0	10	0	14	0	110	13	0	123	10	45	0	0	55	192
Total	0	0	0	0	0	26	0	41	0	67	0	292	35	0	327	32	140	0	0	172	566

08:00 AM	0	0	0	0	0	3	0	39	0	42	0	139	14	0	153	18	50	0	0	68
08:15 AM	0	0	0	0	0	10	0	36	0	46	0	152	15	0	167	26	86	0	0	112
08:30 AM	0	0	0	0	0	4	0	15	0	19	0	100	17	0	117	26	71	0	0	97
08:45 AM	0	0	0	0	0	7	0	18	0	25	0	97	21	0	118	18	54	0	0	72
Total	0	0	0	0	0	24	0	108	0	132	0	488	67	0	555	88	261	0	0	349
1036																				

Grand Total	0	0	0	0	0	50	0	149	0	199	0	780	102	0	882	120	401	0	0	521	1602
Apprch \%	0	0	0	0		25.1	0	74.9	0		0	88.4	11.6	0		23	77	0	0		
Total \%	0	0	0	0	0	3.1	0	9.3	0	12.4	0	48.7	6.4	0	55.1	7.5	25	0	0	32.5	
Automobiles	0	0	0	0	0	50	0	148	0	198	0	780	101	0	881	120	401	0	0	521	1600
\% Automobiles	0	0	0	0	0	100	0	99.3	0	99.5	0	100	99	0	99.9	100	100	0	0	100	99.9
Biccie and Pesestrian	0	0	0	0	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	0	2
\% 8 bo	0	0	0	0	0	0	0	0.7	0	0.5	0	0	1	0	0.1	0	0	0	0	0	0.1

Gunnison County, CO
Whetstone Housing
AM Peak
SH 135 and CR 738

File Name : SH 135 and CR 738 AM
Site Code : IPO 650
Start Date: 9/13/2023
Page No : 2

Gunnison County, CO
Whetstone Housing
AM Peak
SH 135 and CR 738

File Name : SH 135 and CR 738 AM
Site Code : IPO 650
Start Date: 9/13/2023
Page No : 3

	CR 738 Eastbound					CR 738 Westbound					SH 135 Northbound					SH 135 Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 08:00 AM																					
08:00 AM	0	0	0	0	0	3	0	39	0	42	0	139	14	0	153	18	50	0	0	68	263
08:15 AM	0	0	0	0	0	10	0	36	0	46	0	152	15	0	167	26	86	0	0	112	325
08:30 AM	0	0	0	0	0	4	0	15	0	19	0	100	17	0	117	26	71	0	0	97	233
08:45 AM	0	0	0	0	0	7	0	18	0	25	0	97	21	0	118	18	54	0	0	72	215
Total Volume	0	0	0	0	0	24	0	108	0	132	0	488	67	0	555	88	261	0	0	349	1036
\% App. Total	0	0	0	0		18.2	0	81.8	0		0	87.9	12.1	0		25.2	74.8	0	0		
PHF	. 000	. 000	. 000	. 000	. 000	. 600	. 000	. 692	. 000	. 717	. 000	. 803	. 798	. 000	. 831	. 846	. 759	. 000	. 000	. 779	. 797

Ridgeview Data
Collection

Gunnison County, CO
Whetstone Housing
AM Peak
SH 135 and CR 738

File Name : SH 135 and CR 738 AM
Site Code : IPO 650
Start Date : 9/13/2023
Page No : 4

Image 1

The number of pedestrians shown on this report is representative of the crossing on the approaching leg, i.e. pedestrians crossing the north side of the intersection are counted as pedestrians in the southbound crosswalk, as that is the approaching leg that they are crossing (see figure below). Diagonal crossings are counted on the two legs that will get the pedestrian to the same end point. Diagonals can be counted separately if discussed prior to count.

Ridgeview Data Collection

Gunnison County, CO
Whetstone Housing
PM Peak
SH 135 and CR 738
File Name: SH 135 and CR 738 PM
Site Code : IPO 650
Start Date : 9/13/2023
Page No : 1

Groups Printed- Automobiles - Bicycle and Pedestrian

	CR 738 Eastbound					CR 738 Westbound					SH 135 Northbound					SH 135Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
04:00 PM	1	0	0	0	1	23	0	16	0	39	0	50	3	0	53	17	135	0	0	152	245
04:15 PM	0	0	0	0	0	19	0	18	0	37	0	56	8	0	64	14	115	0	0	129	230
04:30 PM	0	0	0	0	0	13	0	14	0	27	0	73	6	0	79	16	115	1	0	132	238
04:45 PM	0	0	0	0	0	16	0	12	0	28	0	64	7	0	71	21	97	0	0	118	217
Total	1	0	0	0	1	71	0	60	0	131	0	243	24	0	267	68	462	1	0	531	930

05:00 PM	0	0	0	0	0	15	0	21	0	36	0	56	9	0	65	18	103	0	0	121	222
05:15 PM	0	0	0	0	0	10	0	12	0	22	0	54	5	0	59	29	91	0	0	120	201
05:30 PM	0	0	0	0	0	10	0	26	0	36	0	53	7	0	60	15	64	0	0	79	175
05:45 PM	0	0	0	0	0	5	0	13	0	18	0	51	5	0	56	14	61	0	0	75	149
Total	0	0	0	0	0	40	0	72	0	112	0	214	26	0	240	76	319	0	0	395	747

Grand Total	1	0	0	0	1	111	0	132	0	243	0	457	50	0	507	144	781	1	0	926	1677
Apprch \%	100	0	0	0		45.7	0	54.3	0		0	90.1	9.9	0		15.6	84.3	0.1	0		
Total \%	0.1	0	0	0	0.1	6.6	0	7.9	0	14.5	0	27.3	3	0	30.2	8.6	46.6	0.1	0	55.2	
Automobiles	1	0	0	0	1	111	0	132	0	243	0	457	50	0	507	143	781	1	0	925	1676
\% Automobiles	100	0	0	0	100	100	0	100	0	100	0	100	100	0	100	99.3	100	100	0	99.9	99.9
Bicyle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
\% Bicycle and Pedestrian	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.7	0	0	0	0.1	0.1

Gunnison County, CO
File Name : SH 135 and CR 738 PM
Whetstone Housing
Site Code : IPO 650
Start Date : 9/13/2023
Page No : 2

Gunnison County, CO
File Name : SH 135 and CR 738 PM
Whetstone Housing
PM Peak
Site Code : IPO 650
Start Date : 9/13/2023
SH 135 and CR 738

	$\begin{aligned} & \text { CR } 738 \\ & \text { Eastbound } \end{aligned}$					CR 738 Westbound					$\text { SH } 135$ Northbound					SH 135 Southbound					
Start Time	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Left	Thru	Right	Peds	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 04:00 PM																					
04:00 PM	1	0	0	0	1	23	0	16	0	39	0	50	3	0	53	17	135	0	0	152	245
04:15 PM	0	0	0	0	0	19	0	18	0	37	0	56	8	0	64	14	115	0	0	129	230
04:30 PM	0	0	0	0	0	13	0	14	0	27	0	73	6	0	79	16	115	1	0	132	238
04:45 PM	0	0	0	0	0	16	0	12	0	28	0	64	7	0	71	21	97	0	0	118	217
Total Volume	1	0	0	0	1	71	0	60	0	131	0	243	24	0	267	68	462	1	0	531	930
\% App. Total	100	0	0	0		54.2	0	45.8	0		0	91	9	0		12.8	87	0.2	0		
PHF	. 250	. 000	. 000	. 000	. 250	. 772	. 000	. 833	. 000	. 840	. 000	. 832	. 750	. 000	. 845	. 810	. 856	. 250	. 000	. 873	. 949

Ridgeview Data Collection

Gunnison County, CO
Whetstone Housing
PM Peak
SH 135 and CR 738

File Name : SH 135 and CR 738 PM
Site Code : IPO 650
Start Date : 9/13/2023
Page No : 4

Image 1

The number of pedestrians shown on this report is representative of the crossing on the approaching leg, i.e. pedestrians crossing the north side of the intersection are counted as pedestrians in the southbound crosswalk, as that is the approaching leg that they are crossing (see figure below). Diagonal crossings are counted on the two legs that will get the pedestrian to the same end point. Diagonals can be counted separately if discussed prior to count.

APPENDIX B

Future Traffic Projections

OOTOTISTraffic Projections: Whetstone Housing

APPENDIX C

Trip Generation Worksheets

Kimley»)Horn

Project Whetstone Housing
Subject Trip Generation for Single-Family Attached Housing
Designed by TES
Checked by \qquad

Date	October 27, 2023	Job No.	096684007
Date		Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Fitted Curve Equations
Land Use Code - Single-Family Attached Housing (215)
Independent Variable - Dwelling Units (X)

$$
X=46
$$

T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (200 Series Page 239)
$(T)=0.52(X)-5.70$
$(T)=0.52$ *

- 5.70

Directional Distribution: 31\% ent. 69\% exit.
$\mathrm{T}=18 \quad$ Average Vehicle Trip Ends
6 entering 12 exiting
$6+12=18$
Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (200 Series Page 240)
$(T)=0.60(X)-3.93$
$(T)=0.60$ *
-3.93

Directional Distribution: 59\% ent. 41\% exit.
$\begin{array}{ccc}\mathrm{T}= & 24 & \text { Average Vehicle Trip Ends } \\ 14 & \text { entering } & 10 \\ \text { exiting }\end{array}$
$14+10=24$

Weekday (200 Series Page 238)

$(T)=7.62(X)-50.48$
$(\mathrm{T})=7.62$ * (46) $\quad-50.48$
Directional Distribution: 50\% entering, 50\% exiting $\mathrm{T}=302 \quad$ Average Vehicle Trip Ends

151 entering 151 exiting
$151+151=302$

Kimley»)Horn

Project Whetstone Housing
Subject Trip Generation for Affordable Housing (Income Limits)
Designed by TES
Checked by \qquad Date November 01, 2023
Job No. 096684007
Sheet No.

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rate Equations
Land Use Code - Affordable Housing (Income Limits) (ITE 223)
Independent Variable - Dwelling Units (X)

$$
X=210
$$

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (Page 342)

Average Weekday
$\mathrm{T}=0.36$ (X)
$T=0.36$ * 210
Directional Distribution: 29\% ent. 71\% exit.
$\mathrm{T}=76 \quad$ Average Vehicle Trip Ends
22 entering 54 exiting
$22+54\left(^{*}\right)=76$

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (Page 343)

Average Weekday
$(T)=0.46(X)$
$\mathrm{T}=0.46$ * 210

Directional Distribution: 59% ent. 41% exit. $\mathrm{T}=97 \quad$ Average Vehicle Trip Ends 57 entering 40 exiting
$57+40=97$

Weekday (Page 341)

Average Weekday
$(\mathrm{T})=4.81(\mathrm{X})$
$\mathrm{T}=4.81^{*} \quad 210$

Directional Distribution: 50% ent. 50\% exit. T = $1012 \quad$ Average Vehicle Trip Ends 506 entering 506 exiting

$$
506+506=1012
$$

APPENDIX D

Intersection Analysis Worksheets

Synchro 11 Report

Intersection												
Int Delay, s/veh	3.9											
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\uparrow	「'	${ }^{1}$	\uparrow	
Traffic Vol, veh/h	0	0	0	24	0	110	0	498	68	90	266	0
Future Vol, veh/h	0	0	0	24	0	110	0	498	68	90	266	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control Stop	Free	Free	Free	Free	Free	Free						
RT Channelized	-		None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	-	-	-	325	350	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	30	0	138	0	623	85	113	333	0

Intersection				
Intersection Delay, s/veh	9.1			
Intersection LOS	A		WB	SB
Approach	1	1	1	1
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	60	168	718	465
Adj Approach Flow, veh/h	61	172	732	474
Demand Flow Rate, veh/h	494	695	42	
Vehicles Circulating, veh/h	22	201	391	825
Vehicles Exiting, veh/h	0	0	0	0
Ped Vol Crossing Leg, \#/h	1.000	1.000	1.000	6
Ped Cap Adj	8.5	11.4	6.1	
Approach Delay, slveh	5	A	B	
Approach LOS	A			

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	4.976
Critical Headway, s	4.976	4.976	4.976	474
Entry Flow, veh/h	61	172	732	1322
Cap Entry Lane, veh/h	834	679	1167	0.981
Entry HV Adj Factor	0.984	0.977	465	
Flow Entry, veh/h	60	168	1297	
Cap Entry, veh/h	820	663	1148	0.359
V/C Ratio	0.073	0.253	6.1	
Control Delay, s/veh	5.1	8.5	11.4	B
LOS	A	1	5	2

Intersection				
Intersection Delay, s/veh	7.0			
Intersection LOS	A		WB	SB
Approach	EB	1	1	1
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	140	309	613
Adj Approach Flow, veh/h	39	143	315	624
Demand Flow Rate, veh/h	40	322	107	101
Vehicles Circulating, veh/h	678	99	611	364
Vehicles Exiting, veh/h	47	0	0	0
Ped Vol Crossing Leg, \#/h	0	1.000	1.000	8
Ped Cap Adj	1.000	5.0	5.3	8
Approach Delay, slveh	6.0	A	A	A
Approach LOS	A			

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized			1.000	1.000
Lane Util	1.000	1.000	2.609	2.609
Follow-Up Headway, s	2.609	2.609	4.976	4.976
Critical Headway, s	4.976	4.976	315	124
Entry Flow, veh/h	40	143	1237	0.982
Cap Entry Lane, veh/h	691	994	0.980	613
Entry HV Adj Factor	0.975	140	309	1222
Flow Entry, veh/h	39	973	1213	0.501
Cap Entry, veh/h	674	0.144	0.255	8
V/C Ratio	5.0	5.3	A	
Control Delay, s/veh	6.058	A	A	3
LOS	1	1		

$\frac{\text { Intersection }}{}$ Int Delay, s/veh 8.5												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			*			${ }_{*} \uparrow$	「	${ }^{*}$	个	
Traffic Vol, veh/h	0	0	0	30	0	134	0	607	83	110	325	0
Future Vol, veh/h	0	0	0	30	0	134	0	607	83	110	325	0
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control S	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	325	350	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	80	80	80	80	80	80	80	80	80	80	80	80
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	38	0	168	0	759	104	138	406	0

Intersection								
Intersection Delay, s/veh	13.1							
Intersection LOS	B							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		60		206		874		565
Demand Flow Rate, veh/h		61		210		891		576
Vehicles Circulating, veh/h		604		835		191		50
Vehicles Exiting, veh/h		22		247		474		995
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		5.8		11.4		17.8		7.2
Approach LOS		A		B		C		A
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Follow-Up Headway, s	2.609		2.609		2.609		2.609	
Critical Headway, s	4.976		4.976		4.976		4.976	
Entry Flow, veh/h	61		210		891		576	
Cap Entry Lane, veh/h	745		589		1136		1311	
Entry HV Adj Factor	0.984		0.981		0.981		0.980	
Flow Entry, veh/h	60		206		874		565	
Cap Entry, veh/h	733		578		1114		1285	
V/C Ratio	0.082		0.357		0.785		0.439	
Control Delay, s/veh	5.8		11.4		17.8		7.2	
LOS	A		B		C		A	
95th \%tile Queue, veh	0		2		9		2	

Intersection								
Intersection Delay, s/veh	8.6							
Intersection LOS	A							
Approach		EB		WB		NB		SB
Entry Lanes		1		1		1		1
Conflicting Circle Lanes		1		1		1		1
Adj Approach Flow, veh/h		39		172		373		738
Demand Flow Rate, veh/h		40		176		380		753
Vehicles Circulating, veh/h		823		380		124		118
Vehicles Exiting, veh/h		47		124		739		438
Ped Vol Crossing Leg, \#/h		0		0		0		0
Ped Cap Adj		1.000		1.000		1.000		1.000
Approach Delay, s/veh		7.0		5.8		5.9		10.8
Approach LOS		A		A		A		B
Lane	Left		Left		Left		Left	
Designated Moves	LTR		LTR		LTR		LTR	
Assumed Moves	LTR		LTR		LTR		LTR	
RT Channelized								
Lane Util	1.000		1.000		1.000		1.000	
Follow-Up Headway, s	2.609		2.609		2.609		2.609	
Critical Headway, s	4.976		4.976		4.976		4.976	
Entry Flow, veh/h	40		176		380		753	
Cap Entry Lane, veh/h	596		937		1216		1223	
Entry HV Adj Factor	0.975		0.977		0.981		0.981	
Flow Entry, veh/h	39		172		373		738	
Cap Entry, veh/h	581		915		1192		1200	
V/C Ratio	0.067		0.188		0.313		0.616	
Control Delay, s/veh	7.0		5.8		5.9		10.8	
LOS	A		A		A		B	
95th \%tile Queue, veh	0		1		1		4	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		$\mathbf{7}$		4	\mathbf{F}	
Traffic Vol, veh/h	0	12	0	575	299	8
Future Vol, veh/h	0	12	0	575	299	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	13	0	625	325	9

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	-	330	-	0	-	0

Conflicting Flow All	-	330	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-

Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-

Follow-up Hdwy	-3.318	-	-	-	-	
Pot Cap-1 Maneuver	0	712	0	-	-	-
Stage 1	0	-	0	-	-	-
Stage	0		0			

Platoon blocked, \% - . .

Mov Cap-1 Maneuver	-	712	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-

Stage 1
Stage 2

Approach	EB	NB	SB
HCM Control Delay, s	10.2	0	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBTEBLn1	SBT	SBR
Capacity (veh/h)	-712	-	-
HCM Lane V/C Ratio	-0.018	-	-
HCM Control Delay (s)	-10.2	-	-
HCM Lane LOS	-	B	-
HCM 95th \%tile Q(veh)	-	-	

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		$\mathbf{7}$		4	\mathbf{F}	
Traffic Vol, veh/h	0	9	0	294	550	19
Future Vol, veh/h	0	9	0	294	550	19
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	10	0	320	598	21

Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	-	609	-	0	-	0
\quad Stage 1	-	-	-	-	-	-
\quad Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-3.318	-	-	-	-	
Pot Cap-1 Maneuver	0	495	0	-	-	-
\quad Stage 1	0	-	0	-	-	-
Stage 2	0	-	0	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	-	495	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, s	12.4	0	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBTEBLn1	SBT	SBR	
Capacity (veh/h)	-	495	-	-
HCM Lane V/C Ratio	-	0.02	-	-
HCM Control Delay (s)	-	12.4	-	-
HCM Lane LOS	-	B	-	-
HCM 95th \%tile Q(veh)	-	0.1	-	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		$\mathbf{7}$		个	\mathbf{F}	
Traffic Vol, veh/h	0	12	0	699	364	8
Future Vol, veh/h	0	12	0	699	364	8
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	13	0	760	396	9

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	-	401	-	0	-	0

Conflicting Flow All	-	401	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-

Critical Hdwy Stg 1	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-

Follow-up Hdwy	-3.318	-	-	-	-	
Pot Cap-1 Maneuver	0	649	0	-	-	-
Stage 1	0	-	0	-	-	-

Platoon blocked, \% 0 - - .

Mov Cap-1 Maneuver	-	649	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-

 Stage 1
 Stage 2
 | Approach | EB | NB | SB |
| :--- | ---: | ---: | ---: |
| HCM Control Delay, S | 10.7 | 0 | 0 |
| HCM LOS | B | | |

Minor Lane/Major Mvmt	NBT EBLn1	SBT	SBR
Capacity (veh/h)	-649	-	-
HCM Lane V/C Ratio	-0.02	-	-
HCM Control Delay (s)	-	10.7	-
HCM Lane LOS	-	-	
HCM 95th \%tile Q(veh)	-	0.1	-

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		$\mathbf{7}$		4	\mathbf{F}	
Traffic Vol, veh/h	0	9	0	354	670	19
Future Vol, veh/h	0	9	0	354	670	19
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	-	-	-	-
Veh in Median Storage, \#	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	0	10	0	385	728	21

Major/Minor	Minor2	Major1		Major2		
Conflicting Flow All	-	739	-	0	-	0

Conflicting Flow All	-	739	-	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	6.22	-	-	-	-

Critical Hdwy $\operatorname{Stg} 1$	-	-	-	-	-
Critical Hdwy $\operatorname{Stg} 2$	-	-	-	-	-

Follow-up Hdwy	-3.318	-	-	-	-
Pot Cap-1 Maneuver	0	417	0	-	-
\quad Stage 1	0	-	0	-	-
Stage 2	0	-	0	-	-

Mov Cap-1 Maneuver	-	417	-	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-

Approach	EB	NB	SB
HCM Control Delay, S	13.8	0	0
HCM LOS	B		

Minor Lane/Major Mvmt	NBTEBLn1	SBT	SBR
Capacity (veh/h)	-417	-	-
HCM Lane V/C Ratio	-0.023	-	-
HCM Control Delay (s)	-13.8	-	-
HCM Lane LOS	-	B	-
HCM 95th \%tile Q(veh)	-	-	

APPENDIX E

Conceptual Site Plan

CONCEPTUAL DEVELOPMENT PLAN NOTES

 STRUCTURESSINGLE FAMILY - (3 BED)2 DUPLEX - (3 BED)
3 TRIPLEX - TWO STORIES -TWO TOWNHOUSES - (3 BED) 4 APARMENTS APARTMENTS - TWO STORIES - EIGHT WALKUP FLATS (2 BED)

APARTMENTS - TWO STORIES - FOURTEEN WALKUP LATS - (2 BED
ALLEY FLAT - TWO STORIES - (1 BED) - OVER ENCLOS GARAGE
LIVE/WORK TOWNHOUSE - TWO STORIES - THREE UNITS (3 BED) - w/ CLOSED GARAGE
TRIPLEX - TWO STORIES - THREE TOWNHOUSES (BED)

APARTMENTS - TWO STORIES - TWENTY UNITS (1 BED, 2 BED)
APARTMENTS - THREE STORIES - THIRTY-THREE UNITS - (1 BED, 2 BED)
APARTMENTS - TWO STORIES - FOURTEEN UNITS 1 BED, 2 BED)
APARTMENTS - TWO/THREE STORIES - THIRTY SIX UNITS - (1 BED, 2 BED, 3 BED)

AMENITIES
13 central greenway/PARK
14 BOUNDARY TRAIL
15 BOUNDARY LINK
TRANSIT / MULTI-MODAL
16 bus stop
17 SCHOOL BUS PICKUP/DROP OFF
OTHER
18 gers parcel
19 CONNECTION TO COLVIN PROPERTY
20 BOUNDARY TRAIL EASEMENT
21 STORM WATER DETENTION

issuu date: Sketth Plan Site Diagrams 08/26/122 revisions:

CONCEPTUAL
CONCEPTUAL
DEVELOPME PLAN
drawing scale $\quad 1 / 64^{\prime \prime}=1^{1}-0^{n}$

[^0]: ${ }^{1}$ Institute of Transportation Engineers, Trip Generation Manual, Eleventh Edition, Washington DC, 2021.

[^1]: ${ }^{2}$ Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

